Name: Enrolment No:			
Progra Course Course Nos. of	UNIVERSITY OF PETROLEUM AND ENERGY STUD End Semester Examination, May 2021	ES $\begin{aligned} & : \mathbf{8}^{\text {th }} \\ & : 03 \end{aligned}$ rks : 100	
SECTION A			
S. No.		Marks	CO
Q 1	Explain the difference between finite element method and classical methods.	5	CO1
Q 2	Explain the Rayleigh Ritz method.	5	CO1
Q 3	Why are the polynomials preferred as shape functions?	5	CO1
Q 4	Explain plane stress and plane strain problems.	5	CO1
Q 5	Explain the properties of the global stiffness matrix.	5	CO1
Q 6	Explain the terms nodes, primary nodes, secondary nodes and internal nodes.	5	CO1
SECTION B			
Q 7	A composite rod subjected to compression is modeled by two bar elements, as shown in Figure. Determine the nodal displacements and the axial stress in each element. $\begin{aligned} & E_{\mathrm{st}}=200 \mathrm{GPa} \\ & A_{\mathrm{st}}=4 \times 10^{-4} \mathrm{~m}^{2} \\ & E_{2 a}=70 \mathrm{GPa} \\ & A_{21}=2 \times 10^{-4} \mathrm{~m}^{2} \end{aligned}$	10	CO2
Q 8	A plane truss is loaded and supported as shown in Figure. Determine the displacements at the free end using finite element method. Take, $\mathrm{E}=200 \mathrm{GPa}$ and A $=200 \mathrm{~mm}^{2}$	10	CO2

Q 9	For the beam shown in Figure, determine the nodal values at the point of applied load. Take $E=200 \mathrm{GPa}$.	10	$\mathrm{CO3}$
Q 10	For the frame shown in Figure, determine the global stiffness matrix and load vector and apply the boundary conditions using the elimination approach. Take $E=200$ GPa and $\mathrm{Area}=2 \times 2 \mathrm{~cm}^{2}$	10	$\mathrm{CO3}$
Q 11	Determine the determinant of the Jacobian for the triangular element shown in Figure.	10	$\mathrm{CO3}$
SECTION-C			

Q 12	Determine the stiffness matrix for the element shown in Figure. The coordinates are in units of meters. Assume plane stress condition. Let $E=200 \mathrm{GPa}, v=0.25$ and thickness $t=0.05 \mathrm{~m}$.	20	CO 3
	OR		
	If the sides of a rectangular box are 1 m , determine the stiffness matrix and load vector of the element. $E=5 \mathrm{GPa}$ and $v=0.25$. horizontal roller constraints are assumed at node 1 and 4.	20	CO 3

