Name: Enrolm	ent No: UNIVERSITY WITH A PURPOSE	•••=•				
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, May 2021Course: Numerical MethodsSemester: VIProgram: B.Tech ASETime: 03 hrs.Course Code: MATH 2002Max. Marks: 100Instructions: All questions are compulsory.SECTION A (Each question carries 5 marks)						
S. No.		СО				
Q1	Which of the following relation is true? A. $E = \nabla^{-1}$ B. $E = (1 + \nabla)^{-1}$ C. $E = (1 - \nabla)^{-1}$ D. None of these	CO1				
Q2	Newton-Raphson method states that. A. $f(x) = 0$, where f assumed to have a continuous derivative f' , $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ B. $f(x) = 0$, where f assumed to have a continuous derivative f' , $x_{n+1} = x_n + \frac{f(x_n)}{f'(x_n)}$ C. $(x) = 0$, where f assumed to have a continuous derivative f' , $x_{n+1} = \frac{f(x_n)}{f'(x_n)}$ E. None of these					
Q3	The factorial notation form of the polynomial $f(x) = 2x^3 - 3x^2 + 3x - 10$ is	CO3				
Q4	The Value of the integral $I = \int_0^1 (1/(1+x)) dx$ by dividing the interval of integration into 8 equal part and by applying the Simpson's $1/3^{rd}$ rule is is					
Q5	Match the following:A. Newton-Raphson1. IntegrationB. Runge-kutta2. Root findingC. Gauss-seidel3. Ordinary Differential EquationsD. Simpson's Rule4. Solution of system of Linear EquationsA. A2-B3-C4-D1	CO1				

	B. A3-B2-C1-D4									
	C. A1-B4-C2-D3									
	D. A4-B1-C2-D3									
Q6	Which of the following is true for backward difference operator?									
	A. $\nabla^2 f(x) = f(x - 2h) - 2f(x - h) + f(x)$ B. $\nabla^2 f(x) = f(x - 2h) + 2f(x - h) + f(x)$ C. $\nabla^2 f(x) = f(x - 2h) - 2f(x - h) - f(x)$									
	None of these									
	SE	TION B	(Each ques	tion car	rries 10 m	iarks)				
Q7	Let z be the true value of a quantity and z_1 be its approximate value. Define absolute error, relative error and percentage error. If $z = xy$, find the percentage error in z when $x = 56.54 \pm 0.005$ and $y = 12.40 \pm 0.050$.									
Q8	From the following table, find the number of students who obtained marks between 80 and 85.									
	Marks $0-3$ obtained	5 35 -	45 45 -	- 55 5	55 — 65	65 — 75	75 – 85	CO3		
	Number of 15 students	25	15	5	35	20	10			
Q9	Show that Newton-Raphson method has a second-order convergence. Find the smallest positive real root of the equation $x e^x = \cos x$ by Newton-Raphson method, correct to 4 significant digits.									
Q10	Solve with Gauss Siedal Method, show four iterations 2x + y + 6z = 9									
c	8x + 3y + 2z = 13									
	x + 5y + z = 7									
Q11	An experiment gave the following values									
	Velocity (v)ft/mir	350	400	500	0	600				
	Time (t) min	61	26	7		2.6		CO5		
	It is known that v and t are connected by the relation $v = at^b$. Find best possible values of a and b . OR									

