Name: Enrolment No:		
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, May 2021 Course: Numerical Methods Semester: VI Program: B.Tech ASE Time: 03 hrs. Course Code: MATH 2002 Max. Marks: 100 Instructions: All questions are compulsory.		
SECTION A (Each question carries 5 marks)		
S. No.		CO
Q1	Which of the following relation is true? A. $E=\nabla^{-1}$ B. $E=(1+\nabla)^{-1}$ C. $E=(1-\nabla)^{-1}$ D. None of these	C01
Q2	Newton-Raphson method states that. A. $f(x)=0$, where f assumed to have a continuous derivative $f^{\prime}, x_{n+1}=$ $x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$ B. $f(x)=0$, where f assumed to have a continuous derivative $f^{\prime}, x_{n+1}=$ $x_{n}+\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$ C. $(x)=0$, where f assumed to have a continuous derivative $f^{\prime}, x_{n+1}=$ $\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$ E. None of these	C02
Q3	The factorial notation form of the polynomial $f(x)=2 x^{3}-3 x^{2}+3 x-10$ is \qquad	C03
Q4	The Value of the integral $I=\int_{0}^{1}(1 /(1+x)) d x$ by dividing the interval of integration into 8 equal part and by applying the Simpson's $1 / 3^{\text {rd }}$ rule is is \qquad	CO4
Q5	Match the following: A. Newton-Raphson 1. Integration B. Runge-kutta 2. Root finding C. Gauss-seidel 3. Ordinary Differential Equations D. Simpson's Rule 4. Solution of system of Linear Equations A. A2-B3-C4-D1	C01

