
Name: Enrolme	: UPES			
	UNIVERSITY OF PETROLEUM AND ENERGY ST	UDIES		
End Semester Examination, May 2021Programme Name: B.Tech MechSemesterCourse Name: Finite element analysisTimeCourse Code: MECH4023PMax. MNos. of page(s): 03Semester			: 03 hrs	
	SECTION A			
S. No.		Marks	CO	
Q 1	Describe the steps in finite element analysis.	5	CO1	
Q 2	Explain the principle of minimum total potential energy.	5	CO1	
Q 3	State the importance of shape functions.	5	CO1	
Q 4	Explain C^0 and C^1 continuity.	5	CO1	
Q 5	Describe constant strain, linear strain and cubic strain triangles.	5	CO1	
Q 6	Explain the connectivity matrix.	5	CO1	
Q 7	SECTION B Determine the global stiffness matrix for the system shown in Figure. All elemen have same length, area and material properties.	ts 10	CO2	
Q 8	A steel rod subjected to compression is modeled by two bar elements, as show Figure. Determine the nodal displacements and the axial stress in each element. $0.5 \text{ m} \longrightarrow 0.5 \text{ m} \longrightarrow 0.5 \text{ m} \longrightarrow 12 \text{ kN}$ $E = 207 \text{ GPa}$ $A = 500 \text{ mm}^2$	n in 10	CO2	

Q 9	A plane truss is loaded and supported as shown in Figure. Determine the displacements at the ends using finite element method. Take, $E = 200$ GPa and $A = 200$ mm ²			
		10	CO2	
Q 10	For the frame shown in Figure, determine the global stiffness matrix and load vector and apply the boundary conditions using the elimination approach. Take $E = 200$ GPa and Area = 2×2 cm ² 10 kN/m	10	CO3	
Q 11	Construct the global load vector corresponding to the beam element shown in Figure. $\begin{array}{c} & & & P \\ & & & & \\ \hline \end{array} \\ \hline & & & \\ \hline \hline & & & \\ \hline \end{array} \end{array}$	10	CO3	
SECTION-C				
Q 12	Determine the stiffness matrix for the element shown in Figure. The coordinates are in units of meters. Assume plane stress condition. Let $E = 200$ GPa, $v = 0.25$ and	20	CO3	

