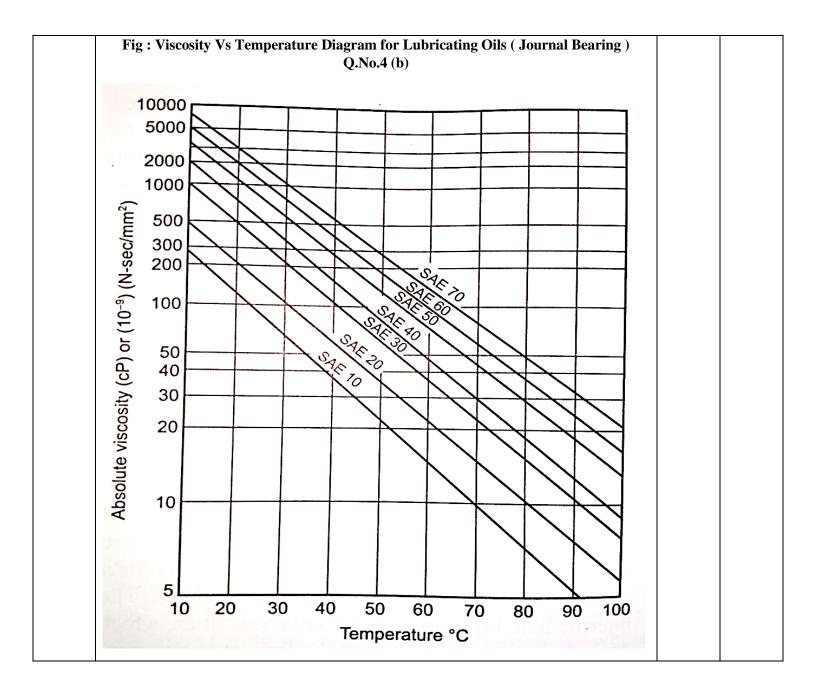
Name:				
Enrolment No:	Roll No.	UNIVERSITY WITH A PURPOSE		
ť	INIVERSITY OF PETROLEUM AND EN	ERGY STUDIES		
	End Semester Examination, May	y 2021		
Course: Design of Mach	nine Elements	Semester: VIth Sem		
Program: B.Tech. Mecha	anical	Time 04 hrs.		
Course Code: MECH300)1	Max. Marks: 100		
Instructions:				
1. Use of Design Data Ha	ndbook is allowed during the examination.			
2. Assume the suitable data	and mention in solution at start.			
3. Draw the necessary diag	rams.			
Note:				
1. Read the instruct	ion carefully before attempting.			
2. This question page	per has 2 Sections: Section A and Section B.			

3. There are total 4 questions of Scan and upload type in Section A /B .

4. Both the sections consist of design problems related to machine components.

5. A is last 2 digits of your roll no. i.e if Power is given by equation (20 + 0.1 x A). If last two digits of roll no. is 10 then power to be used as (20+0.1 x 10) = 21 kW.

6. Examination will be conducted online on CODETANTRA platform.


7. Write the answer over A4 sheet and mention clearly the page number at the top. After the completion of the Section A and B, scan and upload online through CODETANTRA platform.

Section – A (Attempt all the questions)

S. No.	Statement of question	Marks	СО
	SECTION A		
Q 1	(a) A round shaft made of a brittle material and subjected to a bending moment of 15 N-m is shown in figure. The stress concentration factor at the fillet (fillet radius is indicated as $2r$ means it is 2 mm) is 1.5 and the ultimate strength of the shaft material is 200 N/mm ² . Determine the diameter d, the magnitude of stress at the fillet and Factor of safety.	5	CO2

(b)A horizontal shaft AD supported in bearings at A and B and carrying pulleys at C and D is	15	CO2
to transmit $(20+\frac{A}{10})$ kW at 600 r.p.m. from drive pulley D to off-take pulley C, as shown in		
Fig.		
Calculate the diameter of shaft. The data given is : $P_1 = 3 P_2$ (both horizontal), $Q_1 = 2 Q_2$ (both vertical), radius of pulley C = 200 mm, radius of pulley D = 150 mm. Design the shaft by using the ASME. Assume the suitable data from Design data handbook.		
A A A A A A A A A A		
All dimensions in mm.		
Design a riveted Joint in which the pitch of the rivets in the outer row is twice that in the inner rows. Diameter of boiler shell is (1600+ 10 x A) mm and is subjected to internal pressure of 2.0 N/mm ² . Consider the working stresses as $\sigma_t = 90$ MPa in tension, $\sigma_c = 135$ MPa in compression, and $\tau = 60$ MPa in shear for the joint.		
OR	20	CO3
Determine the dimension of flange coupling that connect a motor and a pump shaft. The power to be transmitted a $(20 + 0.1 \times A)$ kW at a shaft speed of 1000 rpm. Select suitable materials for the components of the couplings and list the dimensions with help of suitable diagram.		
Section B		
(a) Design "C" clamp frame for a total clamping force of 20 kN. The cross-section of the frame is rectangular and width to thickness ratio is 2. The distance between the load line and natural axis of rectangular cross section is 120 mm and the gap between two faces is 180 mm.	5	CO1
	vertical), radius of pulley C = 200 mm, radius of pulley D = 150 mm. Design the shaft by using the ASME. Assume the suitable data from Design data handbook. $\begin{array}{c} & & \\ & \\ & \\ \hline \\ & \\ &$	vertical), radius of pulley C = 200 mm, radius of pulley D = 150 mm. Design the shaft by using the ASME. Assume the suitable data from Design data handbook. $\begin{array}{c} \hline \\ \hline $

	(b) Design a pair of spur gear for available at pinion for speed red 900 rpm. $\frac{Detail}{Material}$ Design Stress BHN Speed Tooth Profile σ_{en} Modulus of Elasticity BHN Centre distance Check the gear for dynamic load	W = W = W Following data to traction ratio of 3: 1 ; if the second s	Gear Cast Iron 56 Mpa 160 300 20 ° 84 MPa 100 GPa 160 0 O GPa 160	nsidered as	25	CO4
Q 4	 (2000+10 x A)N is avail service life of 6 years. Set (b) Design a journal bearing Load W= (15+0.1 x A) H Journal speed =1440 rpr Assume following : Journal diameter or 1/c application (here steam) 	p rpm. The radial loa able at bearing. The aggest the diameter for following data of N n I ratio to maintain turbine), other rele gn completely the	d of (3000+10 x A)N and a machine is to work for 8 h of spindle for which bearin used for steam turbine app the pressure as recommendate evant data (Lubricating oil journal bearing by ma	a thrust load of nours/day for a ng can be used. plication ; ended for the and operating	15	CO2/C O4 CO2/C O4

