Enrolment No:

Name:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, May 2021

Course: Statistical Mechanics Program: B.Sc (Honors) Physics Course Code: PHYS 3004

Semester: VI Time 03 hrs Max. Marks: 100

SECTION A		
S. No.	Each Question carries 5 Marks. Questions	СО
Q.1	(a) In specific heat of solids at low temperature $C_v = T^3$ law is followed. It is explained by(i) Dulong and Petit;s theory(ii) B-E statistics(iii) Debye's theory(iv) both (ii) & (iii)(b) The Debye's temperature is[1](i) 273K(ii) $\frac{hv_m}{k_B}$ (iii) $\frac{hv_m}{2\pi k_B}$ (c) The relative probability between two different energy states having difference of 1.1×10^{-20} Joules at 40K is[2](i) e^{-1} (ii) e^{-2} (iii) e(iv) e^2 (iv) e^2 What is the difference between bosons and fermions? Give some examples.	CO2
Q.2	What is the difference between bosons and fermions? Give some examples.	CO1
Q.3	 True/False (a) In B-E statistics, the number of particles condensing into ground state are zero. [T/F] (b) In a quatum statistics the particles are identical and indistinguishable. [T/F] (c) For strongly degenerate fermi gas the specific heat is proportional to the absolute temperature. [T/F] (d) In the equilibrium state, the entropy is minimum. [T/F] (e) The relation between entropy and probability is <i>S</i>=k lnΩ. [T/F] 	C01
Q.4	 (a) Two stars A and B radiate maximums energy at 360 nm and 480 nm respectively. The ratio of their absolute temperatures is: (i) 3:4 (ii) 4:3 (iii) 256: 81 (iv) 81:257 (b) The temperature of a piece of metal is raised from 27°C to 512°C. the rate at which metal radiates energy increases nearly: (i) 1.36 times (ii) 2 times (iii) 4 times (d) 8 times (c) A radiation of energy E and speed C fall normally on a perfectly reflecting surface. The momentum transferred to the surface is: (i) E/C (ii) E/C² (iii) EC (iv) 2E/C (d) A piece of red glass when heated to red hot will appear to be (i) white (ii) red (iii) green (iv) invisible (e) A spherical black body with a radius 12 cm radiates 450W power at 500 K. if the radius were halved and temperature doubled the power radiated in watt would be: (i) 225 (ii) 450 (iii) 900 (iv) 1800 	CO2
Q.5	A particle is moving in one dimension. If it is confined to 10^{-5} m of space and its momentum lies between -10^{-25} kg-m/sec and $+10^{-25}$ kg-m/sec, then the number of quantum states is	CO2

	(i) 1000 (ii) 2000 (iii) 3000 (d) 4000	
Q.6	Why He ³ is considered as Fermion and He ⁴ as Boson?	CO1
	SECTION B	
Each	question carries 10 marks	
Q.1	Demonstrate that neither Wien's law nor Rayleigh Jeans law are able to explain the experimental curve of black body radiation. [4] A spherical blackbody of radius 6 cm is kept at a temperature of 300K. Calculate the wavelength at which maximum energy is radiated. Also, calculate the power radiated. [Stefan's constant is $5.67 \times 10^{-08} \text{ W/m}^2/\text{K}$] [6]	CO2
Q.2	What do you understand by Bose Einstein condensation? Explain by developing the analogy with normal condensation in Euclidian space.[6]Calculate the critical temperature for He ⁴ at which the condensation starts. Given that $\frac{N}{V} = 2.2 \times 10^{28} m^{-3}$ and $m = 6.65 \times 10^{-27} kg$.[4]	CO4
Q.3	Apply Bose-Einstein statistics to photon gas and derive the Planck's law for the spectral distribution of energy in black body radiation. [10]	CO3
Q.4	Given 3 states and 5 molecules. Calculate the thermodynamic probability for (a) $n_1 = 5$, $n_2 = 0$, $n_3 = 0$ (b) $n_1 = 4$, $n_2 = 1$, $n_3 = 0$ (c) $n_1 = 3$, $n_2 = 2$, $n_3 = 0$ (d) $n_1 = 3$, $n_2 = 1$, $n_3 = 1$ (e) $n_1 = 1$, $n_2 = 2$, $n_3 = 2$ Where n_1 , n_2 , n_3 be the occupation number of state 1, 2 and 3, respectively. [10]	CO2
Q.5	 (a) Name the some of the amazing properties, which He⁴ (He-II phase) possess below the temperature 2.17K. (b) Differentiate between classical and quantum statistics. Under what condition quantum statistics gives same results as classical statistics. 	CO4
	Section C	
Each	Question carries 20 Marks. There is an internal choice in this section.	
Q.1	(a) For a system of indistinguishable N particles characterized by non-degenerate energy states, write the partition function and then find out the internal energy, heat capacity at constant volume and Helmholtz free energy for such a system. [10] (b) Consider a one level system having energy $\varepsilon = -k_B T \ln \left(\frac{V}{V_0}\right)$ where V_0 is a constant. Write down the partition function for this system and calculate the average pressure for this system as	
	a function of volume and temperature. [5] (c) A stone at rest falls freely. Determine its phase trajectory. [5] OR	
	 (a) What do you understand by weakly degenerate, strongly degenerate and completely degenerate Fermion gas. (b) Derive an expression for the Fermi energy at 0K for the completely degenerate F-D gas. Establish the relation between average energy and Fermi energy of an electron. (c) Consider silver in the metallic state with one free (conduction) electron to per atom. Calculate the Fermi energy at 0K. The density of silver is 70.5 gm/cm³, and its atomic mass is 108. 	CO3