UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
End Semester Examination, May 2021
Programme Name: B.Tech GSE
Course Name : Statistical Methods in GeoSciences
Course Code: PEGS 3005
Semester : VI
Time : 03 hrs
Max. Marks : 100

Section A(All questions are compulsory.)									
1.	Two marbles are drawn in succession from a box containing 10 red, 30 white, 20 blue and 15 green marbles, with replacement after each drawing. Find the probability that both are white.							[5]	CO1
2.	The time in hours required to repair a machine is exponentially distributed with parameter $\lambda=1 / 3$. What is the probability that the repair time exceeds 3 hours?							[5]	CO2
3.	If X is a random variable with mean μ and variance σ^{2}, then $\frac{2 x_{1}-x_{6}+x_{4}}{6}$ is an unbiased estimator of a) $\frac{\sigma}{\sqrt{6}}$ b) $\sigma \sqrt{1 / 3}$ c) $\mu / 3$ d) σ^{2}							[5]	CO3
4.	The number of messages sent per hour over a computer network has a following probability distribution:							[5]	$\mathrm{CO4}$
	x	10	11	12	13	14	15		
	$P(X=x)$ Determine th	0.08	$\begin{aligned} & 0.15 \\ & \hline \text { e nun } \end{aligned}$	$\begin{aligned} & 0.30 \\ & \hline \text { f mess } \end{aligned}$	$\begin{aligned} & 0.20 \\ & \hline \text { ent p } \end{aligned}$	0.20	0.07		
5.	Assuming second order stationary condition and intrinsic hypothesis, write relation between semivariogram and covariance functions.							[5]	CO5
6.	In which kriging $\mathrm{E}[\mathrm{Z}(\mathrm{x})]$ is assumed constant and known							[5]	CO5

SECTION B
(Q1-Q5 are compulsory and Q5 has internal choices.)

1.	Consider sequences of coin flips. Each flip in a sequence is independent of other flips in the sequence. Head and tail are equally likely in each flip. Let X be a random variable denoting the number of flips before a head appear for the first time. Find the probability mass function of the random variable $X-1$.			[10]	CO1
2.	If X and Y are two random variables with joint probability density function given by $f(x, y)=\left\{\begin{array}{lr} 2, & 0<y<x<1 \\ 0, & \text { otherwise } \end{array}\right\}$ Obtain (a) The marginal and conditional probability density functions. (b) The conditional means $E(X \mid Y)$ and $E(Y \mid X)$			[10]	CO2
3.	Two samples of sizes 9 and 8 give the sum of squares of deviations from their respective means equals to 160 sq . inches and 91 sq. inches. Can these be regarded as drawn from same normal population?			[10]	CO3
4.	The following are data on the number of twists required to break a certain kind of forged alloy bar and the percentages of two alloying elements present in the metal:			[10]	CO4
	Number of twists Y	Percent of element A x_{1}	Percent of element B x_{2}		
	41	1	- ${ }_{5}$		
	49	2	5		
	69	3	5		
	65	4	5		
	40	1	10		
	50	2	10		
	58	3	10		
	57	4	10		
	31	1	15		
	36	2	15		
	44	3	15		
	57	4	15		
	19	1	20		
	31	2	20		
	33	3	20		
	43	4	20		
	Fit a least square regression plane and use its equations to estimate the number of twists required to break one of the bars when $x_{1}=2.5$ and $x_{2}=12$				

5.	A geologist claims that mean temperature in certain region inside the Earth in kelvin is 345 K . To verify the claim, following temperatures are obtained at randomly selected locations in the region: $340,356,332,362,318,344,386,402,322,360,362,354$, $340,372,338,375,364,355,324,370$. Do the data contradict the geologist's claim? OR With equal probability, the observations $5,10,8,21$ nd 7 show the number of defective units found during five inspections in a laboratory. Find the first four central moments,	[10]	CO4
	SECTION C (Q1 is compulsory and has internal choices.)		
1A	Define semi- variogram and explain semi-variogram model. OR Mathematically, define the ordinary kriging error variance, and express it as a function of variogram function.	[10]	
1B	Use simple kriging to estimate the value of $Z\left(x_{0}\right)$ at $x_{0}=(180,120)$. Given $E[Z(x)]=110$ and the covariance function $2000 * \exp \left(\frac{-h}{250}\right)$. here $\mathrm{a}=52+\frac{3}{250} d$, where d is the three digit number formed by last three digits of your roll number. For example if your roll number is R 870218125 , then $\mathrm{d}=125$. OR Use ordinary kriging to estimate the value of $Z\left(x_{0}\right)$ at $x_{0}=(180,120)$. Given, covariance function as $2000 * \exp \left(\frac{-h}{250}\right)$.	[10]	CO5

Name:
Enrollment No:

	X	Y	Z
x_{1}	387	72	50
x_{2}	392	81	a

here $\mathrm{a}=55+\frac{3}{250} d$, where d is the three digit number formed by last three digits of your roll number. For example if your roll number is R 870218125 , then $\mathrm{d}=125$.

