Name:

Enrolment No:

UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Sem. Examination, May 2021

Course: Geomechanics Programme: B.Tech (GIE) Course Code: PEAU3003 Semester: VI Time: 03 hrs. Max. Marks: 100

	SECTION A	
	Question will carry 5 Marks	
	ction: Complete the statement / Select the correct answer(s)	
Sl. No.	Question	СО
Q 1	 (A) The theory of elasticity rests on which of the concepts (i.) Stress (ii.) Strain (iii.) Both (iv.) None (B) The elasticity of the material is defined as (i.) An ability to resist and recover from deformations produced by forces (ii.) The ability to flow of material (iii.) The ability to deform permanently (iv.) The ability to break easily (C) The data source for the least principal stress in GEM is (i.) Leak-off Test (ii.) Extended leak-off Test (iii.) Minifrac (iv.) All (D) As per the Anderson scheme of classification, an area as being characterized by normal fault depending on the condition (i) Sv>SHmax>Sytmin (ii) Sv<shmax>Sytmin</shmax> (iii) Sthmax>Sv>SHmin (iii) Sthmax>Sv>SHmin (iii) Sthmax>Sv>SHmin (iii) Sthmax>Sthmin (iii) Sthmax>Sthmin 	CO1
Q 2	(A) Rock mechanics deals with issues in geosciences related to(i.) Rock mass characterization	
	(ii.) Rock mass mechanics	

	(iii.) Rock drilling	
	(iv.) All	
	(B) The geomechanics deals with which of the following disciplines	
	(i.) Soil mechanics	
	(ii.) Rock mechanics	
	(iii.) Both	
	(iv.) None	
	(C) Formation bulk density at any given depth is the combination of which of the following	CO1
	(i.) Rock grain density	
	(ii.) Pore fluid density	
	(iii.) Porosity of rock formation	
	(iv.) All	
	(D) Which of the following is/are the direct approach to measure in-situ stresses, as suggested by	
	Hudson and Harrison	
	(i.) Hydraulic fracture test	
	(ii.) The flatjack test	
	(iii.) The overcoring gauge test	
	(iv.) All	
	(E) Which of the following is/are the indirect approach to measure in-situ stresses	
	(i.) Acoustic emission	
	(ii) Fault plane solutions	
	(iii) Both	
	(iv.) None	
Q 3	(A) which of the following is true for the Blowout Preventer	
C -	(i.) It is a large automatically operated safety valve at the top of a well that may be closed in	
	case of loss of control over the formation fluids	
	(ii.) The pressure below which a critical stress level is reached	
	(iii.) A solid cylindrical sample or plug of rock cut from the location of the formation under	
	study for use in laboratory tests and analyses	
	(iv.) All	
	(B) which of the following is true for the Effective Stress	
	(i.) The pressure below which a critical stress level is reached, due to high shear stress causing	
	the rock formation to collapse into the borehole	
	(ii.) The average normal stress transmitted directly from particle to particle of a porous	
	material	C01
	(iii.) The maximum engineering stress, in compression, expressing the capacity of a material	
	to withstand axially directed pushing forces without fracture	
	(iv.) The elements of the stress tensor that cause distortion in the volume	
	(C) Which of the following will take place due to the decrease in mud level in the wellbore	
	annulus	
	(i.) The flow of formation fluid into the wellbore	
	(ii.) Underground cross-flow/blowout	
	(iii.) Wellbore instability	
	(iv.) All	
	(D) After the borehole is fractured the hole strength consists of the following	
	(i.) Stress bridge	
1	(1.) SUESS UTURE	1

	(ii.) Least in-situ stress	
	(iii.) Both	
	(iv.) None	
	(E) Which of the following is/are correct about Lost circulation in drilling operation	
	(i.) Increase in non-productive time	
	(ii.) Decrease in mud level in the wellbore annulus	
	(iii.) The bottom hole pressure may become insufficient to balance fluid pressure from the	
	formation	
	(iv.) All	
Q 4	(A) The drill stem test (DST) is mainly used for measurement of	
	(i.) Formation pore pressure	
	(ii.) Pressure	
	(iii.) Permeability	
	(iv.) All	
	(B) The critical breakout width/angle is very much dependent on	
	(i.) Rock formation properties	CO2
	(ii.) Complexity in the location	
	(iii.) Orientation, operation and condition of the wellbore	
	(iv.) All	
	(C) The shallow holes are often drilled without blowout (BOP) preventers	
	(i.) True	
	(ii.) False	
Q 5	(A) "A short post, constructed from a tube of concrete, supports a compressive load of 24.5 metric	
	tonnes. The inner and outer diameters of the tube are 91 cm and 127 cm, respectively, and its	
	length is 100 cm. The shortening of the post is measured as 0.056 cm. The effect of post's weight	
	is neglected. It is also assumed that the post does not buckle under the load. The axial compressive	
	stress in the post is	
	(i.) 2.36 MPa	
	(ii) 3.46 MPa	
	(iii.) 5.36 MPa	CO2
	(in.) 4.46 MPa	
	(B) Assuming the data given in the question number 5A the strain developed in the post is	
	(i) 0.0056	
	(ii) 0.056	
	(iii.) 0.00056	
	(iv.) 0.56	
Q 6	(A) For a vertical borehole, oriented in a principal stress direction, the fracture pressure for a	
V O	normal fault stress state is given by	
	(i.) $P_{wf} = 3\sigma_h - \sigma_H - P_0$	
	(i) $P_{wf} = 56h + 6H + 10$ (ii) $P_{wf} = 66h + 6H + 6H + 20$	
		CO2
	(iv.) $P_{wf} = 3\sigma_h + \sigma_H - P_0$ (P) In an ail field the nerve pressure has dealined to 0.6 s.c. Assuming the Beissen's ratio as 0.25	
	(B) In an oil field the pore pressure has declined to 0.6 s.g. Assuming the Poisson's ratio as 0.25,	
	the changes in horizontal stress and fracture pressure are $(i) = 0.2$ as a real 0.5 s.	
	(i.) 0.3 s.g. and 0.5 s.g.	
1	(ii.) $0.4 \text{ s.g. and } 0.2 \text{ s.g.}$	

	(iii.) 0.6 s.g. and 0.8 s.g.	
	(iv.) 0.4 s.g. and 0.8 s.g.	
	SECTION B	
	a question will carry 10 marks	
	ruction: Write short / brief notes	1
Q 7	Explain the following:	
	(a) Stress and Strain with suitable diagram	
	(b) 2-D Mohr's Circle with associated formula and suitable diagram OR	COI
	Write detailed notes on the following with suitable examples?	CO1
	(a) 3-D and 4-D Geomechanical Earth Model	
	(b) Any two model for the prediction of pore pressure with suitable formulations.	
Q 8	Derive the formula to determine principal stresses and its orientation in two dimensions.	~~~
Q 0	Derive the formula to determine principal successes and its orientation in two dimensions.	CO2
Q 9	It has been determined that a point in a load-carrying member is subjected to the following stress condition:	
	$\sigma_x = 400 \text{ MPa}$ $\sigma_y = -300 \text{ MPa}$ $\tau_{xy} = 200 \text{ MPa}$ (CW)	~~~
	Perform the following:	CO3
	(a) Find maximum and minimum principal stress and maximum shear stress	
	(b) Draw the complete Mohr's circle, labeling critical points	
Q 10	The following data is given for a vertical well drilled.	
	$\sigma_{\rm v} = 10 \text{ MPa}$	
	$\sigma_{\rm H} = \sigma_{\rm h} = 9 {\rm MPa}$	
	$P_0 = 5 MPa$	CO3
	$\mu = 0.3$	000
	Determine the following	
	(a) Fracture pressure for non-deviated well	
0.11	(b) Fracture pressure at the deviation $\Upsilon = 40^{\circ}$ and $\phi = 165^{\circ}$	
Q 11	The matrix below defines a given stress state. Determine the principal stresses.	
	$[\sigma] = \begin{bmatrix} 16 & 3 & 3 \\ 3 & 12 & 6 \\ 2 & 6 & 12 \end{bmatrix}$	CO3
	$[\sigma] = \begin{bmatrix} 3 & 12 & 6 \end{bmatrix}$	05
	SECTION-C	
1. Each	Question carries 20 Marks.	
	ruction: Write long answer.	
Q 12	For an oil field, a vertical well is drilled to a maximum depth of 10,000 ft, the average specific	
	gravity and pore pressure gradient are given as 2.3 and 0.38 psi/ft, respectively. Assume the Biot's	
	constant and Poisson's ratio as 1 and 0.28, respectively. Calculate the following for the above	
	data for the surrounding rock formation at the bottom of the vertical well.	
	(a) Overburden Stress	
	(b) Horizontal In-Situ Stress	CO4
	(c) Normal Stress	
	(d) Shear Stress	
	OR A corre completed 54 mm diameter and L/D ration 2.0 was obtained from the field for the	
	A core sample of 54 mm diameter and L/D ration 2.0 was obtained from the field for the determination of geomechanical properties as per the standard procedure. There was no	
	determination of geomechanical properties as per the standard procedure. There was no	

			ng are tabulated below. Draw	
graph and c	letermine the c	compressive strength, Elastic r	nodulus and Poisson's ratio of	the sample.
	Load(kN)	Axial Displacement (mm)	Lateral displacement (mm)	
	227.1	0.26	0.014	
	293.5	0.3	0.053	
	376.7	0.34	0.014	
	391.4	0.35	0.029	
	415.5	0.38	0.048	
	414	0.42	0.054	