Enrolment No:

Semester: VI

Time 03 hrs

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2021

Course: Process Instrumentation and Control

Program: B. Tech FSE engineering

Course Code: ECEG 3009 Max. Marks: 100

Instructions:

1. Attempt all questions serially as per question paper.

2. Answer should be neat and clean. Draw a free hand sketch for circuits/tables/schematics wherever required.

SECTION A - 30 Marks			
S. No.	Attempt all questions.	Marks	CO
Q 1	What are the basic component of a closed loop control system.	5	CO1
Q2	The characteristics equation of a system in differential form is $\ddot{x} - (K+2)\dot{x} + (2K+10)x = 0$ Find the values of K for which the system is (i) stable (ii) limited stable and (iii) unstable.	5	CO1
Q 3	Compare and contrast a thermocouple with a thermistor as a temperature transducer.	5	CO3
Q 4	What do you understand by orifice meter? Explain the working of orifice meter with suitable diagram?	5	CO3
Q 5	For the block diagram shown in fig. 1. Find the value of transfer function Classify the system output behavior based on the value of damping ratio. $E(s) \qquad \qquad E(s) \qquad C(s)$ $S(s+2\zeta\omega_n) \qquad \qquad Figure 1$	5	CO1
Q 6	What do you understand by venture meter. Explain the working of venturi meter with suitable diagram?	5	CO3

	Section B – 50 Marks			
Q 7	From the root locus plot find the range of value of K for which the system will have damped oscillatory response. Find the break-away points of the root locus defined for $G(s)H(s)=K/s(s+4)(s+5)$?	10	CO 2	
Q 8	Elucidate the mathematical equation of PID controller. What is the advantage of PI controller over PD controller?	10	CO2	
Q 9	A unity feedback system is characterized by an open loop transfer function $G(s) = \frac{K}{s(s+10)}$. Determine the gain K so that the system will have a damping ratio of 0.5. For this value of K determine the settling time, peak overshoot and time to peak overshoot for a unit step input.	10	CO1	
Q 10	What are sensor available for pressure measurement? Explain the working of bellows.	10	CO3	
Q11	Obtain the transfer functions for the following systems with state-space models Available as given below also comment on controllability and observability. $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \; ; y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} u$	10	CO2	
SECTION C, 20 Marks				
Q12 (i)	What do you understand by automation? Differentiate between different types of automation. Draw automation pyramid in with all the stages.	10	CO4	
(ii)	Explain the role of communication in SCADA. Enumerate various available communication modes for communicating RTU & MTU.Describe the features and economic benefits of SCADA system.	10	CO4	