## UPES

## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2021

Programme: B.Sc. (Hons.) Mathematics
Course Name: Finite Element Methods
Course Code: MATH 3027

Semester: VI
Max. Marks: 100
Duration: 3 Hrs.

No. of page/s: 04

## Section A

Attempt all the questions. This section contains 6 multiple-choice questions and one option is correct. Write the correct option. Each question carries 5 marks.

Consider the approximate linear polynomial $u_{h}^{e}(x, y)=c_{1}^{e}+c_{2}^{e} x+c_{3}^{e} y$ in $x$ and $y$ in $\Omega_{e}$. In the
Finite Element Method, triangular elements with narrow geometries should be avoided since:
A. Any two of three nodes are very close to each other or three nodes almost on a line, the coefficient matrix can be nearly singular and numerically non-invertible.
1.
B. We can consider two of three nodes very close to each other since theoretically, the matrix will not be singular.
C. Narrow geometries do not have any impact on finite element meshes since there is a systematic procedure to obtain interpolation functions for triangular meshes.
D. We should avoid only singular matrix since nearly singular matrix does not affect the solution using finite element method

In the Least Square Method, let $u(x) \approx u_{2}(x)=\sum_{j=1}^{2} c_{j} \varphi_{j}+\varphi_{0}(x)$ be the approximation of $u(x)$ in the two-parameter solution of the following differential equation:
$\frac{d^{2} y}{d x^{2}}+y=x^{2}, y(0)=0,\left[\frac{d y}{d x}\right]_{x=1}=1$. Which of the following is correct?
2. A. $\varphi_{1}=x(2+x), \varphi_{2}=x^{2}\left(1-\frac{3}{2} x\right), \varphi_{0}=1$
B. $\varphi_{1}=x\left(2-\frac{3}{2} x\right), \varphi_{2}=x^{2}(1-x), \varphi_{0}=x^{2}$
C. $\varphi_{1}=x\left(2-\frac{2}{3} x\right), \varphi_{2}=x^{2}(1-x), \varphi_{0}=0$
D. $\varphi_{1}=x(2-x), \varphi_{2}=x^{2}\left(1-\frac{2}{3} x\right), \varphi_{0}=x$

In the Galerkin method, let $u(x) \approx u_{1}(x)=c_{1} x(1-x)+(1-x)$ be the approximation of $u(x)$ in one parameter solution of the following differential equation:

$$
-2 u \frac{d^{2} u}{d x^{2}}+\left(\frac{d u}{d x}\right)^{2}=4, u(0)=1, u(1)=1
$$

Then the residual $R$ is:
A. $R=-3+2 c_{1}+c_{1}^{2}$
B. $R=-3-2 c_{1}+c_{1}^{2}$
C. $R=-3+2 c_{1}+c_{1}^{2}+4 c_{1} x$
D. $=-3+2 c_{1}+c_{1}^{2}-4 c_{1} x$

| 4. | In the mechanics of deformable solids, the angle of the twist $\theta$ of an elastic, constant crosssection, circular cylindrical member is related to torque $T$ by $T=k \theta$ where $k=\frac{G J}{L}$. Here $J$ denotes the polar moment area, $L$ is the length, and $G$ is the shear modulus of the material of the shaft. Then the relationship between the end torques $\left(T_{1}^{e}, T_{2}^{e}\right)$ and end twists $\left(\theta_{1}^{e}, \theta_{2}^{e}\right)$ of the torsional dinite element (shown in the figure) is: <br> A. $\left[\begin{array}{l}T_{1}^{e} \\ T_{2}^{e}\end{array}\right]=\left[\begin{array}{ll}k_{e} & k_{e} \\ k_{e} & k_{e}\end{array}\right]\left[\begin{array}{l}\theta_{1}^{e} \\ \theta_{2}^{e}\end{array}\right]$ <br> B. $\left[\begin{array}{c}T_{1}^{e} \\ T_{2}^{e}\end{array}\right]=\left[\begin{array}{cc}-k_{e} & k_{e} \\ k_{e} & -k_{e}\end{array}\right]\left[\begin{array}{c}\theta_{1}^{e} \\ \theta_{2}^{e}\end{array}\right]$ <br> C. $\left[\begin{array}{c}T_{1}^{e} \\ T_{2}^{e}\end{array}\right]=\left[\begin{array}{cc}k_{e} & -k_{e} \\ -k_{e} & k_{e}\end{array}\right]\left[\begin{array}{c}\theta_{1}^{e} \\ \theta_{2}^{e}\end{array}\right]$ <br> D. $\left[\begin{array}{c}T_{1}^{e} \\ T_{2}^{e}\end{array}\right]=\left[\begin{array}{ll}-k_{e} & -k_{e} \\ -k_{e} & -k_{e}\end{array}\right]\left[\begin{array}{c}\theta_{1}^{e} \\ \theta_{2}^{e}\end{array}\right]$ | CO 3 |
| :---: | :---: | :---: |
| 5. | We consider the condensed finite element equations of the eigenvalue problem for the undamped system in the following general form: $\left(\boldsymbol{K}_{\boldsymbol{c}}-\lambda \boldsymbol{M}_{\boldsymbol{c}}\right) \boldsymbol{U}_{\boldsymbol{c}}=0$ <br> Then which of the following statement is true: <br> A. The matrices $\boldsymbol{K}_{\boldsymbol{c}}$ and $\boldsymbol{M}_{\boldsymbol{c}}$ are not real. <br> B. The matrices $\boldsymbol{K}_{\boldsymbol{c}}$ and $\boldsymbol{M}_{\boldsymbol{c}}$ are not symmetric. <br> C. The matrix $\boldsymbol{M}_{\boldsymbol{c}}$ is nonsingular. <br> D. The eigenvectors of two different eigenvalues are not orthogonal. | $\mathrm{CO4}$ |
| 6. | If $\psi_{1}=\left(1-\frac{\bar{x}}{a}\right)\left(1-\frac{\bar{y}}{b}\right), \psi_{2}=\frac{\bar{x}}{a}\left(1-\frac{\bar{y}}{b}\right), \psi_{3}=\frac{\bar{x}}{a} \frac{\bar{y}}{b}$ and $\psi_{4}=\left(1-\frac{\bar{x}}{a}\right) \frac{\bar{y}}{b}$ are the linear interpolation functions for rectangular elements. Then the value of $S_{11}^{12}$ is: <br> A. $-\frac{1}{4}$ <br> B. $\frac{1}{4}$ <br> C. $\frac{b}{3 a}$ <br> D. $-\frac{b}{3 a}$ | $\mathrm{CO4}$ |

## SECTION B

Attempt all the questions. This section contains descriptive type's questions. Each question carries 10 marks.

| 7. | Construct the weak form of the following differential equation: $-\frac{d}{d x}\left(u \frac{d u}{d x}\right)+f=0$ for $0<x<1 ;\left(u \frac{d u}{d x}\right)_{x=0}=0, u(1)=\sqrt{2}$ <br> If $w$ is considered weight function then find $B(w, u)$. Is $B(w, u)$ symmetric and linear? | CO1 |
| :---: | :---: | :---: |
| 8. | The diffusion equation in dimensionless form is given as: $\frac{\partial^{2} T}{\partial x^{2}}-\frac{\partial T}{\partial t}=0 \text { with } T(0, t)=0, T(1, t)=0$ <br> The complete solution of the time-dependent problem is a linear combination of the mode Shapes $U_{n}$ and temporal term $e^{-\lambda_{n} t}: T(x, t)=\sum_{n=1}^{\infty} k_{n} U_{n}(x) e^{-\lambda_{n} t}$ where $k_{n}$ is constant. Use finite element method for the mesh of two linear elements to determine the eigenvalues and the eigenfunctions and compare the result with those obtained with the single quadratic element. | $\mathrm{CO5}$ |
| 9. | What is the importance of natural coordinate $\xi$ ? Derive the linear, quadratic, and cubic interpolation functions for one-dimensional elements in terms of natural coordinate. | CO4 |
| 10. | Calculate the linear interpolation functions for linear and rectangular elements shown in the following figures:  <br> (a)  <br> (b) | $\mathrm{CO5}$ |
| 11. | Consider a stepped bar supported by springs on both ends as shown in the following figure. Using the finite element method, determine the displacements in the springs and stresses in each portion of the stepped bar. Neglect the weight of the bar and assume that the bar experiences only axial displacements. | CO 3 |



