Name:

Q 7

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

Online End Semester Examination, May 2021

Course: Performance analysis of Mechanical Equipment

Program: B. Tech. Electrical Engineering

Course Code: MECH3020P

Semester: VI Time 03 hrs.

Max. Marks: 100

CO₃

SECTION A

- 1. Each Question will carry 5 Marks
- 2. Instruction: Write the statement / answer(s)

S. No.	Question	$5 \times 6 \text{ M} = 30 \text{ M}$	CO			
Q 1	Write down the five different type of Heat exchangers.		CO2			
Q2	List the factors on which the Economic Thickness of Insulation de	pends.	CO2			
Q3	Do you prefer insulating the Boiler?					
			CO2			
Q4	List down the different fuel used in boilers.		CO3			
Q5	Enthalpy and entropy of dry steam at 300 °C and 70 bar is?		CO1			
Q6	List down the parameters (five) considered for running the furnaces	economically.	CO2			
	SECTION B					
1.	Each Question will carry 10 Marks					
2.	2. Instruction: Write short / brief notes $5 \times 10 \text{ M} = 50 \text{ M}$					

Explain the working of strainers, filters and the separators in steam distribution system.

Q 8	What is the need of performance test in boilers? Explain the indirect method for determining the performance of the bolier.				
Q 9					
Q 10	Explain the working of Fludized bed combustion process. What are the advantages of Fludized bed combustion as compared to conventional combustion process.				
Q 11	* * * * * * * * * * * * * * * * * * *				
	Section C				
	Each Question will carry 20 Marks Instruction: Write long answer. $1\times 20 \text{ M} = 20 \text{ M}$				
Q12	A steam turbine receives superheated steam at a pressure of 16 bar and having a degree of superheat of 109 °C. The expansion of steam takes place isentropically upto 0.07 bar. Calculate (a) Heat required to raise the temperature of dry steam from saturated temperature to superheated temperature. (b) Work done and (d) change in entropy during work done.	CO1			
	OR				
	4 Kg of dry steam at 6.0 bar pressure and dryness fraction of 0.5 is heated, so that it become (a) 0.95 dry (b) Dry & saturated (c) Superheated to 300 $^{\circ}$ C (d) Superheated to 250 $^{\circ}$ C Determine the net heat supplied in each case. Take C_{sup} for superheated steam as 2.3 kJ/ kg K.				

Saturated water and steam data for Q12

$oldsymbol{p}$	$T_{ m sat}$	Volume,	$\mathrm{m}^{3}/\mathrm{kg}$	g Energy, kJ/kg		Enthalpy, kJ/kg			Entropy, kJ/(kg K)		
MPa	$^{\circ}\mathrm{C}$	v_f	$oldsymbol{v_g}$	u_f	u_g	h_f	h_g	h_{fg}	s_f	s_g	s_{fg}
0.0070	39.000	0.00100750	20.524	163.34	2428.0	163.35	2571.7	2408.4	0.55903	8.2745	7.7154
0.0075	40.290	0.00100800	19.233	168.74	2429.8	168.75	2574.0	2405.3	0.57627	8.2501	7.6738
0.58	157.506	0.00109905	0.32585	664.01	2565.7	664.65	2754.7	2090.0	1.9176	6.7707	4.8531
0.60	158.826	0.00110060	0.31558	669.72	2566.8	670.38	2756.1	2085.8	1.9308	6.7592	4.8284
1.65	202.856	0.00116103	0.12010	863.25	2595.5	865.17	2793.7	1928.5	2.3575	6.4089	4.0514
1.70	204.307	0.00116336	0.11667	869.76	2596.2	871.74	2794.5	1922.7	2.3711	6.3981	4.0270
1.75	205.725	0.00116565	0.11343	876.13	2596.7	878.17	2795.2	1917.0	2.3845	6.3877	4.0032

Water/Steam at $p=1.6\ MPa\ (Tsat=201.370.)$

T	$oldsymbol{v}$	\boldsymbol{u}	h	s
$^{\circ}\mathrm{C}$	$\mathrm{m^3/kg}$	kJ/kg	kJ/kg	kJ/kg K
300	0.15866	2781.5	3035.4	6.8863
310	0.16190	2798.8	3057.8	6.9250
320	0.16511	2815.8	3080.0	6.9628
330	0.16829	2832.8	3102.1	6.9997

Superheat steam data Water/Steam at $p=0.60\ MPa\ (Tsat=158.826\ ^{\circ}C)$

$oldsymbol{T}$	$oldsymbol{v}$		u		$m{h}$	s
$^{\circ}\mathrm{C}$	m^3/k	$\mathrm{m}^{3}/\mathrm{kg}$		kJ/kg		g kJ/kg K
240	0.3856	0.38568		2705.1		5 7.1426
250	0.3939	0.39390		2721.3		6 7.1832
260	0.4020)8	2737	7.3	2978.	5 7.2230
$m{T}$	$oldsymbol{v}$	1	\boldsymbol{u}		\boldsymbol{h}	s
$^{\circ}\mathrm{C}$	m^3/kg	kJ	/kg	k.	J/kg	kJ/kg K
290	0.42638	278	85.4	30)41.2	7.3373
300	0.43442	280	01.3	30	062.0	7.3740
310	0.44243	283	17.3	30	082.8	7.4100