

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, May 2021

Course: Renewable energy engineering

Program: B. Tech. Electrical

Course Code: EPEG 3018

Semester: VI Time 03 hrs.

Max. Marks: 100

SECTION A

- 1. Each Question will carry 5 Marks
- 2. Instruction: Complete the statement / Select the correct answer(s)

S. No.	Question	CO
Q 1	Chemical reactions triggered by transform organic material into	CO1
	hydrocarbons.	COI
	(a) solar energy	
	(b) hydroelectric	
	(c) elevated temperatures	
	(d) decomposition	
Q2	Solar energy stored in material such as wood, grain, sugar, and municipal waste is called	
	(a) fossil fuels	CO2
	(b) biomass	002
	(c) geothermal energy	
	(d) natural gas	
Q3	is a physical device that can be correlated to the number of photons detected.	
	a) Photodiode	CO1
	b) LEDs	
	c) CFLs	
	d) CFCs	
Q4	Why is a transparent cover used in a flat plate collector?	
	a) To maximize transmission of the incident sunlight into the box	
	b) To minimize transmission of the incident sunlight into the box	CO2
	c) To entirely reflect the incident sunlight back	
	d) To ensure partial transmission of the incident sunlight into the box	
Q5	Which of the following best indicates photosynthesis?	
	a) Carbon dioxide + water → oxygen + glucose	
	b) $6CO2 + 6H2O \rightarrow C6H12O6 + 6O2$ (in the presence of sunlight)	CO2
	c) Carbon dioxide + water → glucose + oxygen (in the presence of sunlight)	
	d) Oxygen + glucose → carbon dioxide + water	
Q6	What are the two primary aerodynamic forces acting on wind turbine rotors?	
=	a) Lift, drag	CO3
	b) Drag, gravitational force	
	c) Gravitational force, lift	
	d) Gravitational force, electrical force	

SECTION B

- 1. Each question will carry 10 marks
- 2. Instruction: Write short / brief notes

Q 7	Illustrate the energtion of flat plate collector and its limitation with a next sketch	~ ~ -
~ ′	Illustrate the operation of flat plate collector and its limitation with a neat sketch.	CO ₂
Q 8	Discuss the consideration and guidelines for wind turbine selection. Also, present statistic of worldwide wind energy scenario.	CO3
Q 9	Explain the basic principle of biomass energy conversion and classify the different conversion processes.	CO4
Q 10	Derive the equivalent circuit diagram of a solar cell and present the I-V curves for variation in series resistance.	CO2
Q 11	Write short note on any one of the following	CO4
	(i) Tidal energy	
	(ii) Geothermal energy	
	Section C Each Question carries 20 Marks.	
	T A A' XX7 . 'A . 1	
2.	Instruction: Write long answer.	
Q12	A wind turbine has the following data:	
	A wind turbine has the following data: Speed of free wind at the height of 9.8 m = 14 m/s	
	A wind turbine has the following data: Speed of free wind at the height of 9.8 m = 14 m/s Air density = 1.3 kg/m3	CO3
	A wind turbine has the following data: Speed of free wind at the height of 9.8 m = 14 m/s Air density = 1.3 kg/m3 Alpha = .15	CO3
	A wind turbine has the following data: Speed of free wind at the height of 9.8 m = 14 m/s Air density = 1.3 kg/m3 Alpha = .15 Height of tower = 120 m	CO3
	A wind turbine has the following data: Speed of free wind at the height of 9.8 m = 14 m/s Air density = 1.3 kg/m3 Alpha = .15 Height of tower = 120 m Diameter of rotor = 100 m	CO3
	A wind turbine has the following data: Speed of free wind at the height of 9.8 m = 14 m/s Air density = 1.3 kg/m3 Alpha = .15 Height of tower = 120 m Diameter of rotor = 100 m Wind velocity at the turbine reduced by 18%	CO3
	A wind turbine has the following data: Speed of free wind at the height of 9.8 m = 14 m/s Air density = 1.3 kg/m3 Alpha = .15 Height of tower = 120 m Diameter of rotor = 100 m Wind velocity at the turbine reduced by 18% Generator efficiency = 80%	CO3
	A wind turbine has the following data: Speed of free wind at the height of 9.8 m = 14 m/s Air density = 1.3 kg/m3 Alpha = .15 Height of tower = 120 m Diameter of rotor = 100 m Wind velocity at the turbine reduced by 18% Generator efficiency = 80% Find	CO3
	A wind turbine has the following data: Speed of free wind at the height of 9.8 m = 14 m/s Air density = 1.3 kg/m3 Alpha = .15 Height of tower = 120 m Diameter of rotor = 100 m Wind velocity at the turbine reduced by 18% Generator efficiency = 80% Find (i) Total power available in wind	CO3
	A wind turbine has the following data: Speed of free wind at the height of 9.8 m = 14 m/s Air density = 1.3 kg/m3 Alpha = .15 Height of tower = 120 m Diameter of rotor = 100 m Wind velocity at the turbine reduced by 18% Generator efficiency = 80% Find (i) Total power available in wind (ii) Power extracted by turbine	CO3
	A wind turbine has the following data: Speed of free wind at the height of 9.8 m = 14 m/s Air density = 1.3 kg/m3 Alpha = .15 Height of tower = 120 m Diameter of rotor = 100 m Wind velocity at the turbine reduced by 18% Generator efficiency = 80% Find (i) Total power available in wind (ii) Power extracted by turbine (iii) Electrical power generated	CO3
	A wind turbine has the following data: Speed of free wind at the height of 9.8 m = 14 m/s Air density = 1.3 kg/m3 Alpha = .15 Height of tower = 120 m Diameter of rotor = 100 m Wind velocity at the turbine reduced by 18% Generator efficiency = 80% Find (i) Total power available in wind (ii) Power extracted by turbine (iii) Electrical power generated (iv) Axial thrust on the turbine	CO3
	A wind turbine has the following data: Speed of free wind at the height of 9.8 m = 14 m/s Air density = 1.3 kg/m3 Alpha = .15 Height of tower = 120 m Diameter of rotor = 100 m Wind velocity at the turbine reduced by 18% Generator efficiency = 80% Find (i) Total power available in wind (ii) Power extracted by turbine (iii) Electrical power generated (iv) Axial thrust on the turbine (v) Maximum axial thrust on the turbine	CO3
	A wind turbine has the following data: Speed of free wind at the height of 9.8 m = 14 m/s Air density = 1.3 kg/m3 Alpha = .15 Height of tower = 120 m Diameter of rotor = 100 m Wind velocity at the turbine reduced by 18% Generator efficiency = 80% Find (i) Total power available in wind (ii) Power extracted by turbine (iii) Electrical power generated (iv) Axial thrust on the turbine	CO3