Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Sem Examination, May 2021

Course: Energy Storage & Fuel Cells Programme: B.Tech Electrical Engineering

Semester: VI Max Marks:100

Duration : 3 Hrs.

Course Code: EPEG 3015

S. No.		Marks	СО
	Section A		
	Short Answer Question.		
	Each Question carries 5 marks		
Q.1	Fill in the Blanks:		
	a) In batteries energy is converted in to Electrical Energy	1+2+2	CO1
	b) In batteries electrodes are used to collect		
	c) In batteries Electrolyte is used to allow of charges		
Q.2	In lithium ion batteries		
	1) During charging Li ⁺ flows from to	2+2+1	001
	2) During Discharging electrons flows from to		CO1
	3) Electrolyte allows flow of		
Q.3	Match the pair for Lithium Ion Batteries:		C01
	A) Binder P) The last stage of manufacturing $(A) = (?)$		
	B) Aluminum Q) Holds Electrode & Current collector $(B) = (?)$	1*5	
	C) Copper R) Porous to allow flow of LI^+ (C) = (?)	1*5	
	D) Calendaring S) Positive Current Collector $(D) = (?)$		
	E) Separator T) Positive Current Collector $(E) = (?)$		
Q.4	Complete sentence using correct word		
	(P=Water, Q=Heat, R=Oxygen, S=Fuel Cells, T=Hydrogen)	1*5	CO2
	A) Electrons add to at the cathode.		
	B)is acting as fuel in fuel cells.		
	C) is a kind of generator not battery		
	D) In fuel cells is by product which can again act as fuel.E) In fuel cells produced is partially/fully used for reaction.		
	(A=?, B=?, C=?, D=?, E=?)		
Q.5	In a PHEV, if the size of IC engine based generator is 5 kW, at what rate (in kWH) it		
X	can charge the battery/supply energy to motor.	5	CO3
Q.6	In battery management system		
	A) SoC affects the (Specific Power/ Specific Energy) of battery.		
	B) As SoC decreases, the (weight of battery / available Energy) decreases	1*5	
	C) Lithium Ion Batteries works better at (sub zero / room) temperature.		CO4
	D) To monitor health of Li-Ion battery, (SoC / terminal Voltage) is important.		
	E) Batteries are connected in series to increase (Current / Voltage)		

	Section B		
0.1	Each Question carries 10 marks		
Q.1	With neat diagram describe the architectural block diagram of Battery Management System	10	CO4
Q.2	With a neat diagram, explain the constant current method of battery charging and brief about the challenges associated with it.	10	CO1
Q.3	Estimate the size of IC engine based generator required for a PHEV with following configuration:		
	Battery Bank Size: 40 kWh, Mileage 240 km @ 60 km/Hr; Proposed travelling distance 520 kM and IC engine based generator is allowed to use for max. of 3 hours.	10	CO3
Q.4	'In debate of Cost of eVs and popularity, PHEVs can be an Out of box solution', justify the statement with neat example.	10	CO3
Q.5	 Explain the effect of following on Battery performance: 1) SoC 2) Terminal voltage of Cells 3) Temperature of batteries 4) Specific Energy 	10	CO4
	Section 'C' Long Answer Question (20 Marks)		
Q 1	In Venezuela, it was proposed to set up a micro grid to supply energy to 200 Houses. Along with other Energy Sources like Solar, Wind etc, it was proposed to use Fuel cell based Energy Source as standby/ Back up Energy Source. The specification of the fuel cells are as following: Max power generation : 100 kW		
	Cell Voltage = 0.65 V Hydrogen Utilization Factor = 75% Air Utilization factor = 25% Daily working hours are not exceeding = 8 Hours per day. Estimate the weekly storage of liquid Hydrogen required. Take Liquid hydrogen density as 71 gm/liter.	20 M	CO2
	OR		
	Estimate the amount of Hydrogen required per hour for a fuel cell based power plant with following specifications. Also estimate, inlet air flow rate/sec, water flow rate per sec and exhaust air flow rate per sec. Power Plant : 1 MW Cell Voltage = 0.63 V, 100 cells are connected in series.	20 M	CO2
	Hydrogen Utilization Factor = 80% Air Utilization factor = 23% Take Liquid hydrogen density as 71 gm/liter.		