Name: Enrolme	Name: Enrolment No:			
	UNIVERSITY OF PETROLEUM AND ENERGY ST	TUDII	ES	
	End Mid Semester Examination, May 2021			
Programme Name: B.Tech ECE Semester		lester	: VI	
Course Name: Fiber Optic CommunicationsTime		: 03 hrs		
Course Code: ECEG 3040Max. MarksNos. of page(s): 2			: 100	
Instruct				
	Attempt all questions as per the instruction			
	Assume any data if required and indicate the same clearly.			
	Jnless otherwise indicated symbols and notations have their usual meanings.			
• \$	Strike off all unused blank pages			<u> </u>
	SECTION A Write only answer in the text box(for S.No:2&3 write ONLY the final	answei	r)	6x 5=30
		unsve)	
S. No.	Question		Marks	CO
Q1.	Explain Signal distortion in optical fibers due to attenuation and absorption.		5	CO1
Q2.	A step index fiber has normalized frequency 25 and at an 1100 nm wavelength.	If the	5	
	core radius is $25\mu m$, determine the numerical aperture			CO1
Q3.	A multimode graded index fiber exhibits total pulse broadening of 0.1 μ S over a		5	
	distance of 15 km. Estimate the pulse dispersion per unit length.			CO2
Q4.			5	
	What is the basic difference between LASER and LED as a source in the ter-	ms of		CO2
	efficiency?			00-
Q5.	Write about four Amplifier Types and Applications in Fiber optics.		5	CO3
Q6.	Write about classification of Fiber optic sensors in the field of instrumentation.		5	CO4
	SECTION B			5x10=50
Q7.	a)Explain three windows of optical communication through the graph representing	g	7+3	
	wavelength Vs attenuation.			CO1
	b)Illustrate the SONET architecture.			

Q8.	A graded index fiber with a parabolic refractive index profile core has a refractive index at the core axis of 1.7 and a relative index difference of 1 %. Estimate the maximum possible core diameter which allows single mode operation at a wavelength of $1.3\mu m$.	10	CO2
Q9.	a)Explain different Splicing techniques with neat sketch.	10	
	b)Draw and explain the output patterns of source to fiber power launching		CO3
Q10	A 2 km length of multimode fiber is attached to apparatus for spectral loss measurement.		
	The measured output voltage from the photo-receiver using the full 2 km fiber length is		
	2.1V at a wavelength of $0.85\mu m$. When the fiber is then cut back to leave a 3 m length	10	CO3
	the output voltage increases to 10.5 V. Determine the attenuation per kilometer for the		
	fiber at a wavelength of $0.85 \mu m$ and estimate the accuracy of the result		
Q11.	Write about implementation of WDM in optical communications in the two windows		
	of wavelengths 1310and 850 nm.	10	CO4
	I	5x10=50	
Q12.	 (a) Two step index fibers have the following characteristics: A core refractive index of 1.500 with a relative refractive index difference of 0.2% and an operating wavelength of 1.55 μm. A core refractive index the same as (a) but a relative refractive index difference of 3% and an operating wavelength of 0. 82 μm. Estimate the critical radius of curvature at which large bending losses occur in both cases. (b) Describe the structure of Find Erbium Doped Fiber Amplifiers. (C)A silicon <i>p-i-n</i> photodiode incorporated into an optical receiver has a quantum efficiency of 60% when operating at a wavelength of 0.9μm. The dark current in the device at this operating point is 3 nA and the load resistance is 4 kΩ. The incident optical power at this wavelength is 200 nmW and the post detection bandwidth of the receiver is 5 MHz. Compare the shot noise generated in the photodiode with the thermal noise in the load resistor at a temperature of 20 °C. 	10+10	CO4