Enrolment No:		
\left.UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2021 $\right]$ Semester: VI		
Section A Each Question will carry 5 Marks Type the final answer in the space provided.		
S. No.		CO
Q 1	Check whether the received code $\left(Y=1010010 \equiv x^{6}+\mathrm{x}^{4}+\mathrm{x}\right)$ for a $(7,4)$ systematic cyclic code is error free or it has any error. If there is an error, what would be the correct code? The generator polynomial for this is $\mathrm{x}^{3}+\mathrm{x}+1$	CO 3
Q 2	The parity check matrix of a particular $(7,4)$ linear block code as given as $\left[\begin{array}{lllllll} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{array}\right]$ Find the syndrome for first bit in error	CO 2
Q 3	Calculate the code of a non-systematic cyclic code for the message 1110. The generator polynomial for this is $\mathrm{p}^{3}+\mathrm{p}+1$	CO 3
Q 4	Find out the number of flip-flops and Gate required in designing the encoder of a systematic cyclic code. The generator polynomial for this is $1+x^{2}+x^{3}+x^{6}+x^{7}$	CO 3
Q 5	Determine the generator polynomial (in binary form) of a BCH code, which is capable of correcting triple bit error. The function of the BCH code is given as: $\begin{aligned} & m_{1}(x)=\left(x^{4}+x+1\right), \quad m_{2}(x)=m_{1}(x), \quad m_{3}(x)=\left(x^{4}+x^{3}+x^{2}+x+1\right), \\ & m_{4}(x)=m_{2}(x), \quad m_{5}(x)=\left(x^{2}+1\right) \text { and } \quad m_{6}(x)=m_{3}(x) \end{aligned}$	CO 2

Q 5	Determine the generator matrix for the parity check matrix of a particular $(7,4)$ linear block code given as $\left[\begin{array}{lllllll} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{array}\right]$	CO 2
Each Question carries 20 Marks. Section C Instruction: Write long answer.		
Q 1	Design a Viterbi decoder using trellis diagram. The coder is consisting of 3 shift-registers, and the code vector from the output of shift register are $\mathrm{V}_{1}=\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}, \mathrm{~V}_{2}=\mathrm{S}_{1}+\mathrm{S}_{3}$. If the input bit sequence to this decoder is 111010101100 . Then determine whether this received bit is correct or not? If there is an error, then find the correct code. From the correct code, determine the message input.	CO4

