UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
 End Semester Examination, May 2021

Programme Name: B.Sc. (Hons.) Mathematics
Course Name : Ring Theory and Linear Algebra-II
Course Code : MATH-3023
Nos. of page(s) : 2

Semester : VI
Time : 3 Hrs
Max. Marks : 100

Section-A

1. Each question will carry 5 Marks. 2. Select correct answer in each question. 3. All Questions of this section are compulsory.

S. No.		CO
Q1	The value of evaluation homomorphism $\phi_{2}\left(x^{2}+x-6\right)$ where $\phi_{2}: Q[x] \rightarrow R$ is (a) 0 (b) 2 (c) 4 (d) 8	CO1
Q2	The product of $f(x)=4 x-5$ and $g(x)=2 x^{2}-4 x+2$ in $Z_{8}[x]$ is (a) x^{2} (b) $6 x^{2}+4 x+6$ (c) $8 x^{3}-6 x^{2}+28 x-10$ (d) $8 x^{3}-6 x^{2}+28 x-10$	CO1
Q3	Let $\left\{f_{1}, f_{2}, f_{3}\right\}$ be the dual basis of $V_{3}[C]$ with respect to basis $\{(1,1,1),(1,1,-1),(1,-1,-1)\}$ and $\alpha=$ $(0,1,0)$ then $f_{1}(\alpha), f_{2}(\alpha)$ and $f_{3}(\alpha)$ are (a) 0,1 and 2 (b) $1,-1$ and 3 (c) $0,1 / 2$ and $-1 / 2$ (d) 0,0 and 0	CO 2
Q4	Let $\phi(x, y)=x-2 y$ be the linear functional on R^{2}. Transpose $T^{t}(x, y)$ of the linear operator $T(x, y)=(y, x+y)$ on R^{2} is (a) x (b) $-2 x-y$ (c) $-x-y$ (d) $\langle c x, y\rangle=\bar{c}\langle x, y\rangle$	CO 2
Q5	Which one of the following subspace W is not T -invariant in R^{3} for given T : $T(a, b, c)=(a+b+c, a+b+c, a+b+c)$ (a) $W=\{(t, t, t): t \in R\}, T(a, b, c)=(a+b+c, a+b+c, a+b+c)$ (b) $W=\{(x, y, 0): x, y \in R\}, T(a, b, c)=(a+b, b+c, 0)$ (c) $W=\{(0,0, z): z \in R\}, T(a, b, c)=(a+b, b+c, 0)$ (d) $W=\{(x, y, 0): t \in R\}, T(a, b, c)=(b+c, a+c, a+b)$	CO 2
Q6	Which one of the following is not true about an inner product $\langle x, y\rangle$? (b) $\langle x+z, y\rangle=\langle x, y\rangle+\langle z, y\rangle$ (c) $\langle c x, y\rangle=\bar{c}\langle x, y\rangle$ (d) $\langle x, x\rangle>0$ for $x \neq 0$. (e) $\langle x, x\rangle=0$ iff $x=0$.	CO 3

Section-B

1. Each question will carry 10 Marks. All Questions of this section are compulsory. In Question 5, there is an internal choice.

S. No.		CO
Q1	Prove that $25 x^{5}-9 x^{4}+3 x^{2}-12$ is irreducible over Q using Eisenstein's criterion.	CO1
Q2	Prove Gauss's lemma: If D is a UFD, then a product of two primitive polynomials in $D[x]$ is again primitive.	CO4
Q3	Verify Cayley Hamilton theorem for a linear operator T on R^{2} defined by $T(a, b)=(a+2 b,-2 a+b)$	CO2
Q4	Apply Gram-Schmidt process to orthogonalize subset $\left\{w_{1}=(1,0,1,0), w_{2}=(1,1,1,1)\right.$ and $w_{3}=$ $(0,1,2,1)\}$ of R^{4}. Then normalize the vectors to obtain an orthonormal subset.	CO3
Q5	Find adjoint T^{*} of the operator $T: C^{3} \rightarrow C^{3}$ defined by $T(x, y, z)=(i x+(2+3 i) y, 3 x+(3-i) z,(2-5 i) y+i z)$ OR	CO3
$(4,7)$.		

Section-C

1. The question will carry 20 Marks. 2. Choose one question from two options.

S. No.		CO
Q1	Find all eigenvalues and a basis of each eigenspace of the operator $T: R^{3} \rightarrow R^{3}$ defined by $T(x, y, z)=(2 x+y, y-z, 2 y+4 z)$.	CO2
Also check whether T is diagonalizable or not? Justify your answer. OR		
Let T be a linear operator on $V=P_{2}(R)$ defined as $T[f(x)]=-x f^{\prime \prime}(x)+f^{\prime}(x)+2 f(x)$. Find minimal polynomial of T.		

