

: VI

: 3 Hrs

Semester

Max. Marks: 100

Time

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2021

Programme Name: B.Sc. (Hons.) Mathematics

Course Name : Ring Theory and Linear Algebra-II
Course Code : MATH-3023

Nos. of page(s) : 2

Section-A

1. Each question will carry 5 Marks. 2. Select correct answer in each question. 3. All Questions of this section are compulsory.

5	section are compulsory.	
S. No.		CO
Q1	The value of evaluation homomorphism $\phi_2(x^2+x-6)$ where $\phi_2:Q[x]\to R$ is (a) 0 (b) 2 (c) 4 (d) 8	CO1
Q2	The product of $f(x) = 4x - 5$ and $g(x) = 2x^2 - 4x + 2$ in $Z_8[x]$ is (a) x^2 (b) $6x^2 + 4x + 6$ (c) $8x^3 - 6x^2 + 28x - 10$ (d) $8x^3 - 6x^2 + 28x - 10$	CO1
Q3	Let $\{f_1, f_2, f_3\}$ be the dual basis of $V_3[C]$ with respect to basis $\{(1,1,1),(1,1,-1),(1,-1,-1)\}$ and $\alpha = (0,1,0)$ then $f_1(\alpha)$, $f_2(\alpha)$ and $f_3(\alpha)$ are (a) 0, 1 and 2 (b) 1, -1 and 3 (c) 0, $\frac{1}{2}$ and -1/2 (d) 0,0 and 0	CO2
Q4	Let $\phi(x,y) = x - 2y$ be the linear functional on R^2 . Transpose $T^t(x,y)$ of the linear operator $T(x,y) = (y,x+y)$ on R^2 is (a) x (b) $-2x - y$ (c) $-x - y$ (d) $< cx,y > = \overline{c} < x,y >$	CO2
Q5	Which one of the following subspace W is not T-invariant in R^3 for given T: $T(a,b,c) = (a+b+c,a+b+c,a+b+c)$ (a) $W = \{(t,t,t): t \in R\}, T(a,b,c) = (a+b+c,a+b+c,a+b+c)$ (b) $W = \{(x,y,0): x,y \in R\}, T(a,b,c) = (a+b,b+c,0)$ (c) $W = \{(0,0,z): z \in R\}, T(a,b,c) = (a+b,b+c,0)$ (d) $W = \{(x,y,0): t \in R\}, T(a,b,c) = (b+c,a+c,a+b)$	CO2
Q6	Which one of the following is not true about an inner product $\langle x, y \rangle$? (b) $\langle x + z, y \rangle = \langle x, y \rangle + \langle z, y \rangle$ (c) $\langle cx, y \rangle = \overline{c} \langle x, y \rangle$ (d) $\langle x, x \rangle > 0$ for $x \neq 0$. (e) $\langle x, x \rangle = 0$ iff $x = 0$.	CO3

Prove that $25x^5 - 9x^4 + 3x^2 - 12$ is irreducible over Q using Eisenstein's criterion. Prove Gauss's lemma: If D is a UFD, then a product of two primitive polynomials in $D[x]$ is again primitive. Verify Cayley Hamilton theorem for a linear operator T on R^2 defined by $T(a,b) = (a+2b,-2a+b)$ Apply Gram-Schmidt process to orthogonalize subset $\{w_1 = (1,0,1,0), w_2 = (1,1,1,1) \text{ and } w_3 = (0,1,2,1)\}$ of R^4 . Then normalize the vectors to obtain an orthonormal subset. Find adjoint T^* of the operator $T: C^3 \to C^3$ defined by $T(x,y,z) = (ix + (2+3i)y, 3x + (3-i)z, (2-5i)y + iz)$	CO1 CO2 CO3
Prove that $25x^5 - 9x^4 + 3x^2 - 12$ is irreducible over Q using Eisenstein's criterion. Prove Gauss's lemma: If D is a UFD, then a product of two primitive polynomials in $D[x]$ is again primitive. Verify Cayley Hamilton theorem for a linear operator T on R^2 defined by $T(a,b) = (a+2b,-2a+b)$ Apply Gram-Schmidt process to orthogonalize subset $\{w_1 = (1,0,1,0), w_2 = (1,1,1,1) \text{ and } w_3 = (0,1,2,1)\}$ of R^4 . Then normalize the vectors to obtain an orthonormal subset. Find adjoint T^* of the operator $T: C^3 \to C^3$ defined by	CO1 CO2
Prove Gauss's lemma: If D is a UFD, then a product of two primitive polynomials in $D[x]$ is again primitive. Verify Cayley Hamilton theorem for a linear operator T on R^2 defined by $T(a,b) = (a+2b,-2a+b)$ Apply Gram-Schmidt process to orthogonalize subset $\{w_1 = (1,0,1,0), w_2 = (1,1,1,1) \text{ and } w_3 = (0,1,2,1)\}$ of R^4 . Then normalize the vectors to obtain an orthonormal subset. Find adjoint T^* of the operator $T: C^3 \to C^3$ defined by	CO1 CO2
Prove Gauss's lemma: If D is a UFD, then a product of two primitive polynomials in $D[x]$ is again primitive. Verify Cayley Hamilton theorem for a linear operator T on R^2 defined by $T(a,b) = (a+2b,-2a+b)$ Apply Gram-Schmidt process to orthogonalize subset $\{w_1 = (1,0,1,0), w_2 = (1,1,1,1) \text{ and } w_3 = (0,1,2,1)\}$ of R^4 . Then normalize the vectors to obtain an orthonormal subset. Find adjoint T^* of the operator $T: C^3 \to C^3$ defined by	CO4
primitive. Verify Cayley Hamilton theorem for a linear operator T on R^2 defined by $T(a,b) = (a+2b,-2a+b)$ Apply Gram-Schmidt process to orthogonalize subset $\{w_1 = (1,0,1,0), w_2 = (1,1,1,1) \ and \ w_3 = (0,1,2,1)\}$ of R^4 . Then normalize the vectors to obtain an orthonormal subset. Find adjoint T^* of the operator $T: C^3 \to C^3$ defined by	CO2
$T(a,b) = (a+2b,-2a+b)$ Apply Gram-Schmidt process to orthogonalize subset $\{w_1 = (1,0,1,0), w_2 = (1,1,1,1) \text{ and } w_3 = (0,1,2,1)\}$ of R^4 . Then normalize the vectors to obtain an orthonormal subset. Find adjoint T^* of the operator $T: C^3 \to C^3$ defined by	
$(0,1,2,1)$ } of R^4 . Then normalize the vectors to obtain an orthonormal subset. Find adjoint T^* of the operator $T: C^3 \to C^3$ defined by	CO3
\mathbf{OR} Use least square approximation to fit a linear curve on the experimental data (1,2), (2,3), (3,5) and (4,7).	CO3
Section-C	
The question will carry 20 Marks. 2. Choose one question from two options.	
	CO
Find all eigenvalues and a basis of each eigenspace of the operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x,y,z) = (2x+y,y-z,2y+4z)$. Also check whether T is diagonalizable or not? Justify your answer. OR	CO2
Let T be a linear operator on $V = P_2(R)$ defined as $T[f(x)] = -xf''(x) + f'(x) + 2f(x)$. Find	
	T(x,y,z) = (2x + y, y - z, 2y + 4z). Also check whether T is diagonalizable or not? Justify your answer. OR