Name:

Enrolment No:

Semester: VI

Time: 3 hours

Max. Marks: 100

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2021

Course: Water Resources Engineering Program: B Tech Civil Engineering Course Code: CIVL 3023

Instructions: Attempt all the questions

SECTION A

Each Question will carry 5 Marks Instruction: Complete the statement / Calculate the correct answer(s)

S. No.		Marks	CO
Q1	The normal annual rainfall at stations A, B, C, and D in a basin are 80.97 , 67.59 , 76.28 and 92.01 cm respectively. In the year 1975, the station D was inoperative and the stations A, B and C recorded annual precipitations of 91.11 , 72.23 and 79.89 cm respectively. Estimate the rainfall at station D in that year.	5	C01
Q2	A reservoir has an average area of 50 km² over an year. The normal annual rainfall at the place is 120 cm and the class A pan evaporation is 240 cm . Assuming the land flooded by the reservoir has a runoff coefficient of 0.4 , estimate the net annual increase or decrease in the streamflow as a result of the reservoir.	5	C01
Q3	The peak of a flood hydrograph due to a 6-h storm is 470 m^3 /s. The mean depth of rainfall is 8.0 cm. Assume an average infiltration loss of 0.25 cm/h and a constant base-flow of 15 m3/s and estimate the peak discharge of the 6-h unit hydrograph for this catchment.	5	CO2
Q4	Find the delta for a crop when its duty is 4.32 km^2 per m ³ /s on the field, the base period of this crop is 60 days.	5	CO3
Q5	Determine the time to irrigate a strip of land 0.1 Ha in an area from a tube-well with a discharge of 0.2 cumecs. The infiltration capacity of the soil may be taken as 0.5 cm/hr, and the average depth of flow on the field as 0.1 m.	5	CO3
Q6	Ordinates of the one hour unit hydrograph of a basin at one-hour intervals are 5, 8, 5, 3 and 1 m^3/s . Calculate the watershed area represented by this unit hydrograph.	5	CO2
	SECTION B		
1. Each	question will carry 10 marks		
	uction: Write short / brief notes		

	Sub- Area	Area Mm ²	Precipitation (mm)		(mm) Annual Evaporation (mm) 530					
	А	A 10.7							10	COI
	В	3	830		438					
	С	8.2	900		430					
	D	17	1300		600					
	Also sketch	the hydrologic	al cycle shoeing	these com	nonents					
8			hydrograph are		•					
	6-h t If two storm calculate the For a river, t	ns, each of 1-c resulting hydro	0 60 150 120 em rainfall exce ograph of flow.	ess and 6-1 Assume ba	n duratio use flow t	o be u	ur in su niform	at10 m ³	/s.	CO
	method are a									
	method are a	Return Per	iod (Years)	Peak Flo	od (cum	ecs)				
	method are a	Return Per	iod (Years)	Peak Floo 435	od (cum	ecs)			10	CO
	method are a		iod (Years)		od (cumo	ecs)			10	CO
	method are a	100	iod (Years)	435	od (cumo	ecs)			10	CO
		100 50		435 395			years?		10	CO
	What flood of Compute the	100 50 discharge in this depth and free	iod (Years) s river will hav quency of irriga	435 395 e a return p	period of	1000 y		o with t		CO
_	What flood of Compute the data given be a) Dept	100 50 discharge in thi e depth and free elow: h of root zone	<u>s river will hav</u> quency of irriga = 1m	435 395 e a return p	period of	1000 y		o with t	he	CO2
	What flood of Compute the data given be a) Dept b) Field	100 50 discharge in this e depth and free elow:	s river will have quency of irriga	435 395 e a return p	period of	1000 y		o with t		CO:

Q11	 e) Efficiency of Irrigation = 10 % f) Apparent specific gravity of soil = 1.5 Assume 50 % depletion of moisture before application of irrigation water at field capacity. With the help of a neat sketch explain the working of given below instruments: a) Double ring infiltrometer b) Class A pan evaporimeter SECTION-C 	5+5	C01
	Question carries 20 Marks.		
Q12	 a) Design a stable canal section to carry-50 cumecs discharge at a slope of 0.25 m/km, having been given that n = 0.0225, and m = 1.00, where the symbols have their usual meaning. b) Compare Lacey's theory with Kenndy's theory. c) Design an irrigation channel section for the following data: Discharge = 30 cumecs Silt factor = 1.0 Side slopes = 0.5 :1. 	10+3+ 7	CO4
	OR		
Q12	 a) A most efficient trapezoidal section is required to give a maximum discharge of 21.5 cumecs. The slope of the channel bottom is 1 in 50 m/km. Taking C as 100 (Chezy's constant), determine the dimensions of the channel. Also determine the value of Manning's n taking the velocity of flow as obtained for the channel by Chezy's Equation. b) Discuss the three regime conditions for canal design with respect to Lacey's theory. 	15+5	CO4