Name: Enrolment No:			
SECTION A			
1. Each Question will carry 5 Marks 2. Instruction: Complete the statement / Calculate the correct answer(s)			
S. No.		Marks	CO
Q1	The normal annual rainfall at stations A, B, C, and D in a basin are $\mathbf{8 0 . 9 7}$, 67.59, 76.28 and 92.01 cm respectively. In the year 1975, the station D was inoperative and the stations A, B and C recorded annual precipitations of 91.11, $\mathbf{7 2 . 2 3}$ and 79.89 cm respectively. Estimate the rainfall at station D in that year.	5	CO1
Q2	A reservoir has an average area of $\mathbf{5 0} \mathbf{k m}^{\mathbf{2}}$ over an year. The normal annual rainfall at the place is $\mathbf{1 2 0} \mathbf{~ c m}$ and the class A pan evaporation is $\mathbf{2 4 0} \mathbf{~ c m}$. Assuming the land flooded by the reservoir has a runoff coefficient of $\mathbf{0 . 4}$, estimate the net annual increase or decrease in the streamflow as a result of the reservoir.	5	CO1
Q3	The peak of a flood hydrograph due to a 6-h storm is $470 \mathrm{~m}^{3} / \mathrm{s}$. The mean depth of rainfall is 8.0 cm . Assume an average infiltration loss of $0.25 \mathrm{~cm} / \mathrm{h}$ and a constant base-flow of $15 \mathrm{~m} 3 / \mathrm{s}$ and estimate the peak discharge of the 6-h unit hydrograph for this catchment.	5	CO2
Q4	Find the delta for a crop when its duty is $4.32 \mathrm{~km}^{2}$ per $\mathrm{m}^{3} / \mathrm{s}$ on the field, the base period of this crop is 60 days.	5	CO3
Q5	Determine the time to irrigate a strip of land 0.1 Ha in an area from a tube-well with a discharge of 0.2 cumecs. The infiltration capacity of the soil may be taken as $0.5 \mathrm{~cm} / \mathrm{hr}$, and the average depth of flow on the field as 0.1 m .	5	$\mathrm{CO3}$
Q6	Ordinates of the one hour unit hydrograph of a basin at one-hour intervals are $5,8,5$, 3 and $1 \mathrm{~m}^{3} / \mathrm{s}$. Calculate the watershed area represented by this unit hydrograph.	5	CO2
SECTION B			
1. Each question will carry 10 marks 2. Instruction: Write short / brief notes			

Q7	A catchment has four sub-areas. The annual precipitation and evaporation from each of the sub-areas are given below. Assume that there is no change in the groundwater storage on an annual basis and calculate for the whole catchment the values of annual average (i) precipitation, and (ii) evaporation. What are the annual runoff coefficients for the sub-areas and for the total catchment taken as a whole? Also sketch the hydrological cycle shoeing these components.	10	CO1
Q8	The ordinates of a 6-h unit hydrograph are as given below: If two storms, each of $1-\mathrm{cm}$ rainfall excess and $6-\mathrm{h}$ duration occur in succession, calculate the resulting hydrograph of flow. Assume base flow to be uniform at $10 \mathrm{~m}^{3} / \mathrm{s}$.	10	CO2
Q9	For a river, the estimated flood peaks for two return periods by the use of Gumbel's method are as follows: What flood discharge in this river will have a return period of 1000 years?	10	CO2
Q10	Compute the depth and frequency of irrigation required for a a certain crop with the data given below: a) Depth of root zone $\quad=1 \mathrm{~m}$ b) Field Capacity $\quad=22 \%$ c) Wilting point $=22 \%$ d) Consumptive use $\quad=25 \mathrm{~mm} /$ day	10	CO3

	e) Efficiency of Irrigation $=10 \%$ f) Apparent specific gravity of soil $=1.5$ Assume 50% depletion of moisture before application of irrigation water at field capacity.		
Q11	With the help of a neat sketch explain the working of given below instruments: a) Double ring infiltrometer b) Class A pan evaporimeter	5+5	CO1
SECTION-C			
1. Each Question carries 20 Marks. 2. Instruction: Write long answer.			
Q12	a) Design a stable canal section to carry- 50 cumecs discharge at a slope of 0.25 m / km, having been given that $\mathrm{n}=0.0225$, and $\mathrm{m}=1.00$, where the symbols have their usual meaning. b) Compare Lacey's theory with Kenndy's theory. c) Design an irrigation channel section for the following data: Discharge $=30$ cumecs Silt factor $=1.0$ Side slopes $=0.5: 1$.	$\begin{gathered} 10+3+ \\ 7 \end{gathered}$	CO4
OR			
Q12	a) A most efficient trapezoidal section is required to give a maximum discharge of 21.5 cumecs. The slope of the channel bottom is 1 in $50 \mathrm{~m} / \mathrm{km}$. Taking C as 100 (Chezy's constant), determine the dimensions of the channel. Also determine the value of Manning's n taking the velocity of flow as obtained for the channel by Chezy's Equation. b) Discuss the three regime conditions for canal design with respect to Lacey's theory.	15+5	CO4

