Name:				
Enrolme	Inrolment No:			
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES			
	End Semester Examination, May 2021			
Program Name : B. Tech. (CERP) Semester				
	Course Name : Process Control Time		: 3 hours	
		arks: 100		
Instruct	 page(s): 03 ions : Assume any missing data. Draw the diagrams, wherever necessary. Use 	vour own g	ranh	
	Write roll number and name on any additional sheet that you use.	your own g	rapii	
	· · ·			
	SECTION A			
S. No.	(6X10=60 marks)	Marks	СО	
	Solve the following differential equations using Laplace Transforms.			
1		10		
	a) $\frac{dx}{dt} - x = 2sint$ $x(0) = 0$	10	CO1	
	b) $\frac{d^2x}{dt^2} + 9x = \cos 2t$ $x(0) = 1$ and $x'(0) = A$			
2	F = 200 L/min			
	Ti = 60	10	CO2	
	Develop transfer function that relates output temperature of the heating tank system to the inlet temperature of the stream. Derive an expression for the output temperature to the step input in the inlet temperature from 60 to 70 °C according to a step change. (Use numerical values)	ı		
3	The overall transfer function of the process is given by $\frac{16}{1.5s^2+2.4s+6}$. If a step	5		
	change of magnitude 6 is introduced into the system, calculate	10		
	1. Overshoot			
	2. Period of oscillation		CO3	
	3. Rise time			
	4. Ultimate value			

	a) Reduce the given block diagram and find C/R		
4	b) A PID controller output in time domain is given by $P(t) = 30 + 5 \in (t) + 1.25 \int_{0}^{t} \epsilon(t) dt + 15 \frac{d\epsilon(t)}{dt}$ The transfer function of the process to be controlled is $\frac{10}{200s+1}$. Find the characteristic equation of the feedback closed loop system when the measuring element has no dynamic lag.	10	CO4
5	A proportional derivative controller with a time constant of 4min is used to control two non-interacting liquid levels with time constants of 1 and 0.5 respectively in a negative feedback control system. The process has a gain of 0.5 (The numerator in the process transfer function will have 0.5). The measuring element has no dynamic lag with a unity transfer function. Determine the value of Kc for which the system is stable. Draw the process diagram and block diagram.	10	CO5
6	Using Ziegler-Nichols rules, determine proportional gain, derivative and integral time for the system shown below. (Do not plot the bode diagram and use Bode stability criterion) $R \longrightarrow PID controlle \longrightarrow \frac{1}{(s+1)} \longrightarrow e^{-0.5s} \longrightarrow C$ OR Explain Cohen and Coon rules for tuning a controller.	10	CO6
	SECTION B (2 X 20=40 marks)		
7	Find the stability of the following system for Kc=1,2 and 3. For any value of Kc if the system is on verge of instability condition, evaluate the roots of the characteristic	20	CO5
	equation for which the system goes to instability.		

	$R \longrightarrow Kc(0.5s+1) \longrightarrow \frac{1}{s(s+1)(s+0.5)} \longrightarrow C$ OR		
	Plot the root locus for the open loop transfer function $\frac{K}{s(s+4)(s^2+2s+2)}$		
8	 With neat diagrams and appropriate process and block diagrams explain a) Cascade control system b) Ratio control system 	20	CO6