Name: Enrolment No: UNIVERSITY WITH A PU		
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, May 2021 Course: Metric Spaces \& Complex Analysis Semester: VI Course Code: MATH 3005 Time: 03 hrs. Programme: B.Sc. (Hons.) Mathematics Max. Marks: 100		
SECTION - A $6 \times 5=30 \text { Marks }$ 1. Each Question will carry 5 Marks 2. Instruction: Select the correct option(s)		
Q 1	Let (X, d) be a metric space. (X, d) is disconnected if there exists a nonempty proper subset of X A. Both open and closed. B. Open C. Closed D. Neither open nor closed.	CO 2
Q 2	Every convergent sequence is a A. Cauchy Sequence B. Bounded Sequence C. Unbounded Sequence D. None of these	CO1
Q 3	If $f(z)=\frac{z^{2}}{(z+2)(z-1)^{2}}$, then residue of $z=-2$ is: A. $5 / 9$ B. $4 / 9$ C. $1 / 9$ D. $3 / 9$	CO3
Q 4	The value of $\int_{-1+i}^{1+i} z^{2} d z$ along the parabola: $x=t, y=t^{2},-1 \leq t \leq 1$ is: A. $-4 / 3$ B. 3/4 C. 1 D. -1	CO4
Q 5	The value of m so that $2 x-x^{2}+m y^{2}$ may be harmonic is: A. 0 B. 1 C. 2 D. 3	CO3
Q 6	The radius of convergence of the power series $\sum \frac{2+i n}{2^{n}} z^{n}$ is: A. 1 B. 2 C. 0 D. ∞	CO3
SECTION - B $10 \times 5=50 \text { Marks }$ 1. Each question will carry 10 marks 2. Instruction: Answer on a separate white sheet, upload the solution as image.		
Q 1	Let $\left(X, d_{1}\right)$ and $\left(Y, d_{2}\right)$ be two metric spaces. A function $f: X \rightarrow Y$ is continuous on X if and only if for each open set $G \subset Y, f^{-1}(G)$ is an open subset of X.	CO1
Q 2	Prove that every contraction mapping T on a complete metric space (X, d) has a unique fixed point.	CO 5
Q 3	If $u-v=(x-y)\left(x^{2}+4 x y+y^{2}\right)$ and $f(z)=u+i v$ is an analytic function of $z=x+i y$, find $f(z)$ in terms of z by Milne Thomson method.	CO3

Q 4	Show that $w=\frac{i-z}{i+z}$ maps the real axis of z plane into the circle $\|w\|=1$ and the half plane $y>0$ into the interior of unit circle $\|w\|=1$ in the w plane.	CO 3
Q 5	Evaluate $\oint_{c} \frac{1}{Z^{2} \sin Z} d z$ where C is the triangle with vertices $(0,1),(2,-2)$, (7, 1).	CO4
1. Each Question carries 20 Marks. 2. Instruction: Answer on a separate white sheet, upload the solution as image.		
Q 1	Using complex variable techniques, evaluate the integral $\int_{0}^{2 \pi \sin ^{2} \theta-2 \cos \theta} \frac{2+\cos \theta}{d \theta}$. OR Using complex variables, Evaluate the real integral $\int_{0}^{\infty} \frac{\cos 3 x}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$.	CO4

