Name: Enrolment No:			
Progr Cour Cour Nos. Instru bookl Note:	\qquad	ES Sem Tim Max. M he answ	$\begin{aligned} & \text { r: VI } \\ & 3 \text { hrs. } \\ & \text { s: } 100 \end{aligned}$
SECTION-A (Answer all questions)			
S. No.		Marks	CO
Q1	Criticize corrosion of metals/alloys in soil environment	10	CO4
Q2	Discuss about galvanic corrosion, microbiologically induced corrosion, pitting corrosion, erosion corrosion, stress corrosion cracking and their preventions.	10	CO1
Q3	Describe corrosion and justify how the corrosion rate of a metal/alloy varies with different environments.	10	CO1
Q4	Determine whether iron is stable in aqueous solution at $\mathrm{pH}=3,5$, and 7. Plot the driving EMF and the Gibbs free-energy as a function of pH . Assume $P_{H_{2}}=1 \mathrm{~atm}$. and $\left[\mathrm{Fe}^{2+}\right]=10^{-6} \mathrm{M}$.	10	$\mathrm{CO2}$
Q5	Illustrate stainless steel alloys and its corrosion behavior.	10	$\mathrm{CO4}$
Q6	A new heat exchanger is required in conjunction with a rearrangement of existing facilities. Because of corrosion, the expected life of a carbon steel heat exchanger is 5 years. The installed cost is $\$ 9500$. An alternative to the heat exchanger is a unit fabricated of AISI type 316 stainless steel, with an Installed cost of $\$ 26,500$ and an estimated life of 15 years, to be written off in 11 years. The minimum acceptable interest rate is 10 percent, the tax rate is 48 percent, and the depreciation method is straight line. Justify which unit would be more economical based on annual costs.	10	$\mathrm{CO5}$
SECTION-B(Answer all questions and question 7 has internal choice)			
Q7	A. Define polarization and discuss about anodic and cathodic polarization. B. Derive Butler-Volmer equation. OR Construct an Evans diagram (E vs. \log i) for the corrosion of silver in a hydrogen saturated 0.1 M HCl solution where the activity of Ag^{2+} is $10^{-18} \mathrm{M}$. The corrosion reaction data is as follows: $\left[\mathrm{Ag}^{+}\right]=10^{-18} \mathrm{M},\left[\mathrm{H}^{+}\right]=0.1 \mathrm{M}$ Tafel slopes: $\beta_{\mathrm{a}}=0.1 \mathrm{~V} /$ decade, $\beta_{\mathrm{b}}=-0.1 \mathrm{~V} /$ decade Tafel constant: $a_{c}=-0.0824 \mathrm{~V}$ vs SHE (cathode)	$\begin{gathered} (5+15) \\ \text { OR } \\ (6+9+5) \end{gathered}$	CO2

	\quad Exchange current densities: $i_{A g}^{o}=0.8 \frac{A}{\mathrm{~cm}^{2}}, i_{H_{2}}^{o}=0.15 \frac{\mathrm{~A}}{\mathrm{~cm}^{2}}$		
Calculate: (a) Equilibrium potentials of the hydrogen and Ag redox reaction. (b) Corrosion current and corrosion potential. (c) Protection current to prevent corrosion.			
Q8	Discuss the following corrosion prevention methods I. Corrosion inhibitors II. \quad Cathodic protection method.	$\mathbf{2 0}$	$\mathbf{C O 3}$

Table: Standard Electrode Potentials at $25^{\circ} \mathrm{C}$ and Their Isothermal Temperature Coefficients

