Name:

Enrolment No:

Semester: VI

Time: 03 hrs.

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2021

Program Name : B.Tech (CE+RP)
Course Name : Corrosion Engineering

Course Code : CHCE3025P Max. Marks: 100

Course		Max. Mai i	25. 100
Nos. of		_	
	tions: The question paper consists of two sections. Answer the questions section wise in	the answer	
booklet.			
Note: A	Assume suitable data wherever necessary		
	SECTION-A		
G 37	(Answer all questions)		1
S. No.		Marks	CO
Q1	Criticize corrosion of metals/alloys in soil environment	10	CO4
Q2	Discuss about galvanic corrosion, microbiologically induced corrosion, pitting corrosion, erosion corrosion, stress corrosion cracking and their preventions.	10 CO1	
Q3	Describe corrosion and justify how the corrosion rate of a metal/alloy varies with different environments.	10	CO1
Q4	Determine whether iron is stable in aqueous solution at pH = 3, 5, and 7. Plot the driving EMF and the Gibbs free-energy as a function of pH. Assume $P_{H_2} = 1$ atm. and $[\text{Fe}^{2+}] = 10^{-6} \text{M}$.	10	CO2
Q5	Illustrate stainless steel alloys and its corrosion behavior.	10	CO4
Q6	A new heat exchanger is required in conjunction with a rearrangement of existing facilities. Because of corrosion, the expected life of a carbon steel heat exchanger is 5 years. The installed cost is \$9500. An alternative to the heat exchanger is a unit fabricated of AISI type 316 stainless steel, with an Installed cost of \$26,500 and an estimated life of 15 years, to be written off in 11 years. The minimum acceptable interest rate is 10 percent, the tax rate is 48 percent, and the depreciation method is straight line. Justify which unit would be more economical based on annual costs.	10	CO5
	SECTION-B		
	(Answer all questions and question 7 has internal choice)		
Q7	A. Define polarization and discuss about anodic and cathodic polarization. B. Derive Butler-Volmer equation. OR Construct an Evans diagram (E vs. log i) for the corrosion of silver in a hydrogen	(5+15)	
	saturated 0.1M HCl solution where the activity of Ag ²⁺ is 10 ⁻¹⁸ M. The corrosion reaction data is as follows:	OR	CO2
	$[Ag^+] = 10^{-18} \text{ M}, \ [H^+] = 0.1 \text{ M}$ Tafel slopes: $\beta_a = 0.1 \text{ V/decade}, \beta_b = -0.1 \text{ V/decade}$ Tafel constant: $a_c = -0.0824 \text{ V vs SHE (cathode)}$	(6+9+5)	

	Exchange current densities: $i_{Ag}^0 = 0.8 \frac{A}{cm^2}$, $i_{H_2}^0 = 0.15 \frac{A}{cm^2}$		
	Calculate:		
	(a) Equilibrium potentials of the hydrogen and Ag redox reaction.		
	(b) Corrosion current and corrosion potential.		
	(c) Protection current to prevent corrosion.		
Q8	Discuss the following corrosion prevention methods		
	I. Corrosion inhibitors	20	CO3
	II. Cathodic protection method.		

Table: Standard Electrode Potentials at 25 $^{\circ}\mathrm{C}$ and Their Isothermal Temperature Coefficients

	Electrode Reaction	e ^o (V vs SHE	$\left(\frac{dE^o}{dT}\right) \times 10^3 \left(\frac{V}{o_c}\right)$
$Li^+ Li$	$Li^++e^-=Li$	-3.045	0.534
$Rb^+ Rb$	$Rb^+ + e^- = Rb$	2.925	—1.245
$Cs^+ Cs$	$Cs^++e^-=Cs$	2.923	—1.197
$K^+ K$	$K^+ + e^- = K$	2.925	1.080
Ra ²⁺ Ra	$Ra^{2+} + 2e^{-} = Ra$	2.916	0.59
Ba ²⁺ Ba	$Ba^{2+} + 2e^{-} = Ba$	2.906	0.395
Ca ²⁺ Ca	$Ca^{2+} + 2e^{-} = Ca$	2.866	0.175
Na ⁺ Na	$Na^+ + e^- = Na$	2.714	-0.772
La ³⁺ La	$La^{3+} + 3e^{-} = La$	-2.522	+0.085
$Mg^{2+} Mg$	$Mg^{2+} + 2e^{-} = Mg$	2.363	+0.103
Be ²⁺ Be	$Be^{2+} + 2e^{-} = Be$	—1.847	+0.565
$Al^{3+} Al$	$Al^{3+} + 3e^{-} = Al$	-1.662	+0.504
Ti ²⁺ Ti	$Ti^{2+} + 2e^{-} = Ti$	-1.628	-
$Zr^{4+} Zr$	$Zr^{4+} + 4e^{-} = Zr$	—1.529	-
$V^{2+} V$	$V^{2+} + 2e^- = V$	—1.186	-
$Mn^{2+} Mn$	$Mn^{2+} + 2e^{-} = Mn$	1.180	0.08
$Zn^{2+} Zn$	$Zn^{2+} + 2e^{-} = Zn$	0.762	+0.09
$Cr^{3+} Cr$	$Cr^{3+} + 3e^- = Cr$	0.744	+0.468
$SbO_2^- Sb$	$SbO_2^- + 2H_2O + 3e^- = Sb + 4OH^-$	0.670	-
Ga ³⁺ Ga	$Ga^{3+} + 3e^- = Ga$	0.529	+0.67
$S^{2-} S$	$S + 2e^{-} = S^{2-}$	0.510	-
Fe ²⁺ Fe	$Fe^{2+} + 2e^{-} = Fe$	0.440	+0.052
Cr^{3+} , Cr^{2+} Pt	$Cr^{3+} + e^- = Cr^{2+}$	0.408	-
$Cd^{2+} Cd$	$Cd^{2+} + 2e^{-} = Cd$	0.402	0.093
$Ti^{3+}, Ti^{2+} Pt$	$Ti^{3+} + e^{-} = Ti^{2+}$	0.369	-
$Tl^+ Tl$	$TI^+ + e^- = TI$	0.336	—1.327
$Co^{2+} Co$	$Co^{2+} + 2e^{-} = Co$	0.277	+0.06
Ni ²⁺ Ni	$Ni^{2+} + 2e^- = Ni$	0.250	+0.06
$Mo^{3+} Mo$	$Mo^{3+} + 3e^- = Mo$	0.20	-
$Sn^{2+} Sn$	$\operatorname{Sn}^{2+} + 2e^{-} = \operatorname{Sn}$	0.138	0.282
$Pb^{2+} Pb$	$Pb^{2+} + 2e^{-} = Pb$	0.126	0.451
Ti ⁴⁺ , Ti ³⁺ Pt	$Ti^{4+} + e^{-} = Ti^{3+}$	0.040	-
H^+ , $H_2 Pt$	$H^+ + e^- = \frac{1}{2} H_2$	T0.000	T0.000
	- 4: 2:		$(+0.871)^{m}$
$Sn^{4+}, Sn^{2+} Pt$	$Sn^{4+} + 2e^- = Sn^{2+}$	+ 0.015	-
Cu^{2+} , $Cu^{+} Pt$	$Cu^{2+} + e^- = Cu^+$	+0.153	+0.073
$Ag^{+} Ag$	$Ag^+ + e^- = Ag$	+0.799	
Cu ²⁺ Cu	$Cu^{2+} + 2e^{-} = Cu$ $F_{2}(CN)^{3-} + e^{-} = F_{2}(CN)^{4-}$	+0.337	+0.008
$Fe(CN)_{6}^{3-}$, Fe $(CN)_{6}^{4-}$ Pt	$Fe(CN)_{6}^{3-} + e^{-} = Fe(CN)_{6}^{4-}$	+0.360	-
OH^- , $O_2 Pt$	$\frac{1}{2}$ O ₂ + H ₂ O+ 2e ⁻ = 2OH ⁻	+0.401	0.440
Cu ⁺ Cu	$Cu^+ + e^- = Cu$	+0.521	0.058
$I^- I_2, Pt$	$I_{2}+2e^{-}=2I^{-}$	+0.535	0.148
$MnQ_{\overline{4}}, \\ MnQ_{\overline{4}}^{2-} Pt$	$MnO_{4} + e^{-} = MnO_{4}^{2}$	+0.564	-