\qquad Roll No: \qquad

1 UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
 End Semester Examination, May 2021
 Program: Chemical Engg. B. Tech. (Refinery and Petrochemicals); CE-RP

Semester: II
Course Name: Process Optimization
Course Code: CHCE 3020/CHEG 455
Max. Marks: 100
Duration (cumulative): 3 Hrs
No. of pages: $1+2=3$
In this OPEN BOOK(S) (any number and kind) and NOTES EXAM, you are allowed to have any books, all handouts provided (including your textbook in xeroxed form or in its printed form), your own class-notes and your solutions to assignment problems, etc. EVERYTHING EXCEPT DISCUSSIONS AMONG YOURSELVES.

Please REMEMBER to return the Question Paper IF THERE IS ANY WORK DONE ON THAT

1. Show $\boldsymbol{A L L}$ intermediate steps of your answers (and not just the final answers) to earn marks
2. You are allowed to use only simple scientific calculators
3. Please scan YOUR ANSWERS and submit their pdf files on-line on BB to the questions in the sequence of your page numbers: 1, 2, 3. In addition, please submit a copy to me at skgupta@iitk.ac.in (This is necessary since come of you may have connectivity issues)

Section A: ALL QUESTIONS ARE COMPULSORY [30 $\times 2=60 \mathrm{Marks}]$

Q. 1 Consider the problem:

$$
\text { Minimize } f\left(x_{1}, x_{2}\right) \equiv\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2}-9=0
$$

subject to the equality constraint:

$$
g\left(x_{1}, x_{2}\right) \equiv x_{1}-4=0
$$

and bounds

$$
\begin{aligned}
& -\infty \leq x_{1} \leq \infty \\
& -\infty \leq x_{2} \leq \infty
\end{aligned}
$$

Plot $f\left(x_{1}, x_{2}\right)$ and $g\left(x_{1}, x_{2}\right)$ and find the solution graphically.
(30 Points)
Q. 2 We would like to use the binary-coded genetic algorithm (GA) with two binaries (bits) to represent each of x_{1} and x_{2}. Use (the conventional) binary number $=0$ if $0 \leq \mathrm{R} \leq 0.5^{-}$
and binary number $=1$ if $0.5^{+} \leq \mathrm{R} \leq 1.0$. Use the sequence of random numbers in Table 2.6 on page 78 (or Table 4.1 page 167) of your textbook to fill up the Table (of binaries) below for only three chromosomes, 1-3.

CO2
(30 points)

Chromosomes (binary):

Chromosome No.	x_{1} (binary)		x_{2} (binary)	
1				
2				
3				

Section B: COMPULSORY QUESTION|Total 40 Marks]

Q. 1: A doctor in her/his clinic, station 1 (location: x_{1}, y_{1}), has to visit four (influential) patients in their homes (stations 2, 3, 4 and 5), with their x, y locations given as $x_{\mathrm{i}}, y_{\mathrm{i}}(i$ $=2,3,4,5$), in any convenient sequence once her/his clinic is over (say, at 1 pm). (S)He wishes to minimize the total distance (s)he travels. Find the optimal sequence of her/his visits.
(40 Points)

CLINIC, station 1

Patient 1; station 2
Patient 2; station 3
Patient 3; station 4

Patient 4; station 5

