Name: \_\_\_\_\_

# UPES

### UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2021

Program: Chemical Engg. B. Tech. (Refinery and Petrochemicals); CE-RP

|                                   | Semester: II                          |
|-----------------------------------|---------------------------------------|
| Course Name: Process Optimization | Max. Marks: 100                       |
| Course Code: CHCE 3020/CHEG 455   | Duration ( <u>cumulative</u> ): 3 Hrs |
| No. of pages: $1 + 2 = 3$         |                                       |

In this <u>OPEN BOOK(S) (any number and kind) and NOTES EXAM</u>, you are allowed to have any book<u>s</u>, *all* handouts provided (including your textbook in xeroxed form or in its printed form), *your own class-notes* and your solutions to assignment problems, *etc. EVERYTHING EXCEPT DISCUSSIONS AMONG YOURSELVES*.

## <u>Please REMEMBER to return the Question Paper IF THERE IS ANY WORK</u> <u>DONE ON THAT</u>

- 1. Show *ALL <u>intermediate steps</u>* of your answers (and not just the final answers) to earn marks
- 2. You are allowed to use only simple scientific calculators
- 3. Please scan YOUR ANSWERS and submit their pdf files <u>on-line</u> on BB to the questions in the sequence of your page numbers: 1, 2, 3. In addition, please submit a copy to me at <u>skgupta@iitk.ac.in</u> (This is necessary since come of you may have connectivity issues)

### Section A: ALL QUESTIONS ARE COMPULSORY [30 x 2 = 60 Marks]

Q.1 Consider the problem:

*Minimize* 
$$f(x_1, x_2) \equiv (x_1 - 1)^2 + (x_2 - 1)^2 - 9 = 0$$

subject to the equality constraint:

$$g(x_1, x_2) \equiv x_1 - 4 = 0$$

and bounds

$$-\infty \le x_1 \le \infty$$
$$-\infty < x_2 < \infty$$

Plot  $f(x_1, x_2)$  and  $g(x_1, x_2)$  and find the solution graphically. (30 Points)

Q. 2 We would like to use the *binary-coded* genetic algorithm (GA) with <u>two</u> binaries (bits) to represent <u>each</u> of  $x_1$  and  $x_2$ . Use (the conventional) binary number = 0 if  $0 \le R \le 0.5^-$ 

and binary number = 1 if  $0.5^+ \le R \le 1.0$ . Use the sequence of random numbers in Table 2.6 on page 78 (or Table 4.1 page 167) of your textbook to fill up the Table (of binaries) below for <u>only</u> three chromosomes, 1 - 3. **CO2** (30 points)

| Chromosome<br>No. | $x_1$ |      | <i>x</i> <sub>2</sub> |     |
|-------------------|-------|------|-----------------------|-----|
|                   | (bin  | ary) | (bina                 | ry) |
| 1                 |       |      |                       |     |
| 2                 |       |      |                       |     |
| 3                 |       |      |                       |     |

**Chromosomes (binary):** 

#### Section B: COMPULSORY QUESTION[Total 40 Marks]

Q. 1: A doctor in her/his clinic, station 1 (location:  $x_1$ ,  $y_1$ ), has to visit *four* (*influential*) patients in their homes (stations 2, 3, 4 and 5), with their *x*, *y* locations given as  $x_i$ ,  $y_i$  (*i* = 2, 3, 4, 5), in any *convenient* sequence once her/his clinic is over (say, at 1 pm). (S)He wishes to minimize the total distance (s)he travels. Find the optimal sequence of her/his visits.

(40 Points)



\* \* \*