
Name:

Enrolment No:

	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES		
	Online End Semester Examination, May 2021		
Course	e: Finite Element Analysis Semester: V	[
Program: B. Tech Aerospace Engineering Time: 03 hrs		5.	
Course Code: MECH 4007P Max. Marks		: 100	
Pages:		- 200	
0	ctions: Make use of sketch/plots to elaborate your answer. All sections are compulso	rv	
	SECTION A (30 marks)	Ū	
1. Eacl	h Question will carry 5 Marks		
2. Inst	ruction: Type your answers in the provided space		
S. No.		Marks	CO
Q 1	Which relations are used in one-dimensional finite element modeling?		
C	a) Stress-strain relation		
	b) Strain-displacement relation	[05]	CO2
	c) Total potential energy		
	d) Total potential energy; Stress-strain relation; Strain-displacement relation.		
Q 2	Stiffness matrix represents a system of		
	a) Programming equations		
	b) Iterative equations	[05]	CO1
	c) Linear equations		
	d) Program CG SOLVING equations		
Q 3	What are the basic unknowns on stiffness matrix method?		
	a) Nodal displacements		
	b) Vector displacements	[05]	CO1
	c) Load displacements		
	d) Stress displacements		
Q 4	Write the element stiffness matrix for a beam element.		
	251		
	a) $K = \frac{2ET}{L}$		
	a) $K = \frac{2EI}{l}$ b) $K = \frac{2EI}{l} \begin{bmatrix} 2 & 1\\ 1 & 2 \end{bmatrix}$		
	b) $K = \frac{1}{l} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$	[05]	CO2
	2E[2]	[03]	02
	c) $K = \frac{2E}{l} \begin{bmatrix} 2\\ 1 \end{bmatrix}$		
	1 K 2E [1 1]		
	d) $K = \frac{2E}{l} \begin{bmatrix} \overline{1} & 1 \\ 1 & 1 \end{bmatrix}$		
Q 5	Principal of minimum potential energy follows directly from the principal of		
	a) Elastic energy	_	
	b) Virtual work energy	[05]	CO3
	c) Kinetic energy		
	d) Potential energy		

Q 6	Dimension of global stiffness matrix is a) <i>N</i> X <i>N</i> , where N is no of nodes b) <i>M</i> X <i>N</i> , where M is no of rows and N is no of columns c) Linear d) Eliminated	[05]	CO3
	SECTION B (50 marks) Each question will carry 10 marks Instruction: Write short/brief notes, scan and upload the document		
Q 7	Solve the following equation using a two-parameter trial solution by the Rayleigh- Ritz method, $\frac{dy}{dx} + y = 0, \qquad y(0) = 1$	[10]	CO2
Q 8	Define the following terms with suitable sketches;(i) Shell element; (ii) Beam element; (iii) Truss element; (iv) 3D element	[10]	CO3
Q 9	Solve the differential equation for a physical problem expressed as $\frac{d^2y}{dx^2} + 100 = 0$ $0 \le x \le 10$ with boundary conditions as y(0)=0 and y(10)=0 using (i) Point collocation method (ii) Sub domain collocation method	[10]	CO3
Q 10	A 3 node rod element has a quadratic shape function matrix: $N = \langle 1 - \frac{3x}{L} + \frac{2x^2}{L^2}, \frac{4x}{L} - \frac{4x^2}{L^2}, -\frac{x}{L} + \frac{2x^2}{L^2} \rangle$ For $L = 1 m$, $E = 200 \times 10^9$ Pa, $u_1 = 0, u_2 = 5 \times 10^{-6} m$, $u_2 = 15 \times 10^{-6} m$ Find: a. The displacement u at $x = 0.25 m$. b. The strain as a function of x . c. The strain at $x = 0.25 m$. d. The stress at $x = 0.25 m$. E, A ₁ \downarrow	[10]	CO4

