Enrolment No:

UNIVERSITY WITH A PURPOSE

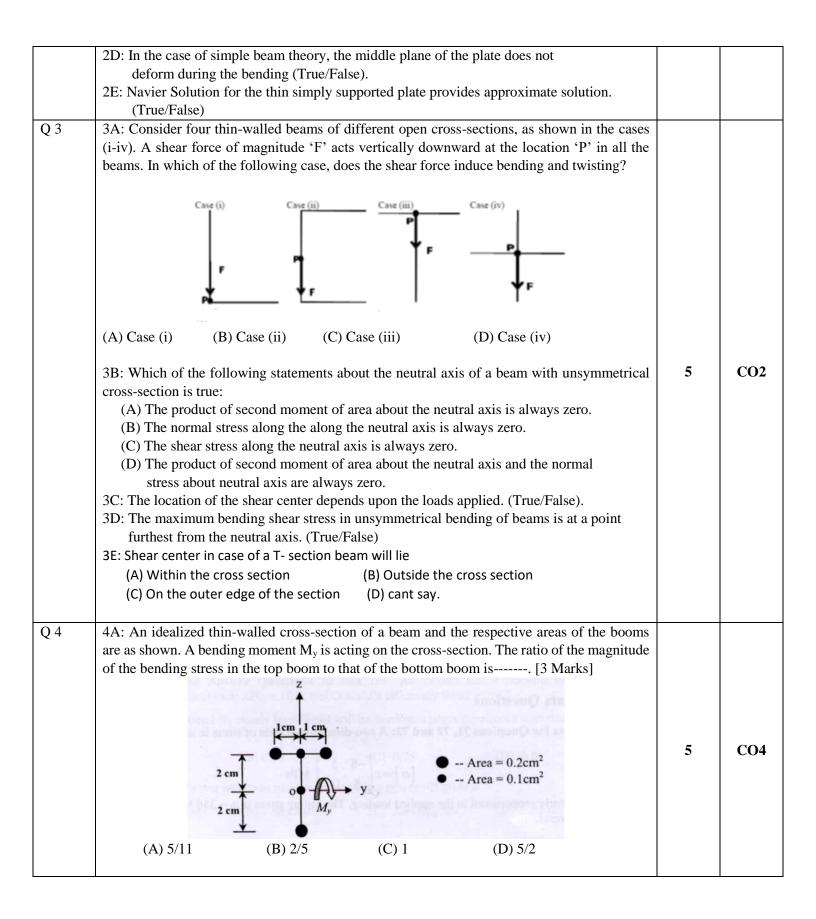
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2021

Course: Aircraft Structure-II Program: B.Tech ASE , ASE+AVE Semester: VI

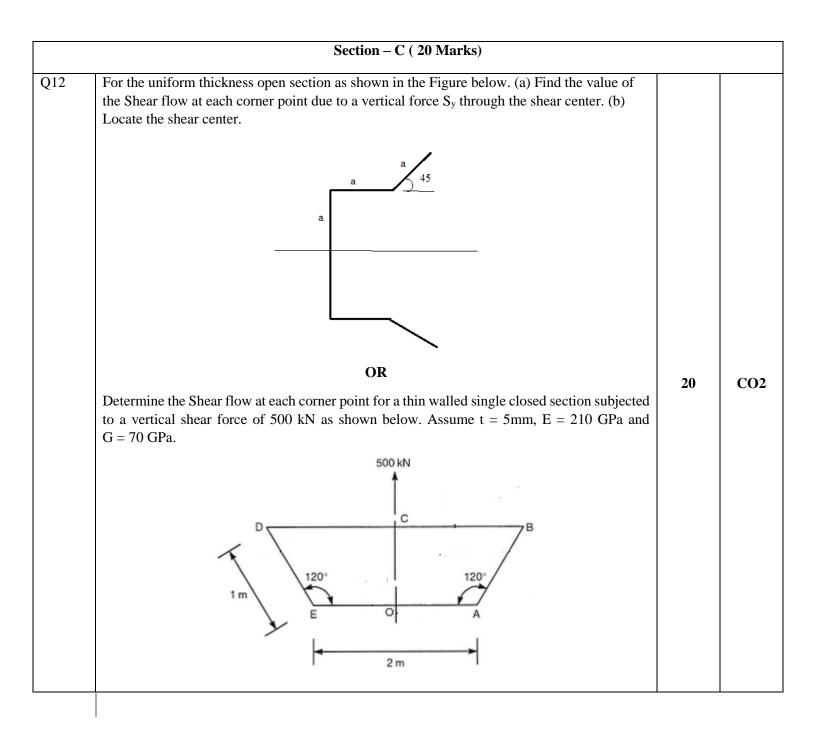
Course Code: ASEG 3013

Time 03 hrs.


Max. Marks: 100

Note: Section A and B is compulsory. Attempt any ONE Questions from Section-C. Assume any MISSING data

accordingly. Brief and to the point, answers are expected.


SECTION A (30 Marks)

S. No.		Marks	CO
Q 1	 1A: Which of the following statements about the compatibility equations are true: P. Strain compatibility equations must be satisfied in the solution of three-dimensional problem of elasticity. Q. Six Strain are defined in terms of three displacement functions and can have arbitrary values. R. Compatibility equations are an expression of the continuity and displacements. (A) P and Q (B) Q and R (C) P and R (D) P, Q and R 1B: Which of the following is not a part of the aircraft Structural components? P) Fuselage Q) Wing R) Stabilizing tail S) Landing gear T) Engines. (A) P and Q (B) Q and R (C) S and T (D) R, S and T 1C: The benefit of a semimonocoque fuselage compared to a monocoque fuselage is that the semimonocoque fuselage does not require the skin to carry any load thereby reducing the stress on the skin. (TRUE/FALSE). 1D: Longerons are the longitudinal members in a monocoque fuselage. (TRUE/FALSE). 1E: Ribs can be lightened by stamping holes in the assembly. (TRUE/FALSE). 	5	CO1
Q 2	 2A: "Generally, a thin plate is the structural member having" (A) small dimensional structural member (B) thickness is small as compared to other dimensions (C) youngs modulus is small (D) shear modulus is small 2B: The assumptions made in the bending theory of thin plate (A) The displacement of the plate in a direction parallel z-axis is small as compared to thickness of plate (B) plane section of plate before bending remain plane after bending (C) applied bending moments are postive when they induce tension on the Lower surface of the plate (D) All of the above 2C: "Flexural rigidity of the plate, depends on " (A) Youngs Modulus (B) poissons ratio (C) thickness of the plate 	5	CO3

	4D. For the Thir welled been and set in the set in the C of the set is the C		
	4B: For the Thin walled beam cross section as shown in the figure, the shear center lies at: [2		
	marks]		
	$A \bullet \bullet \bullet \bullet C$		
	G•		
	Interna was will an off the production for the define long		
	D		
	(A) Mid-Point of AB i.e. at point E (B) Mid-point of BD i.e. at point F		
	(C) Junction Point B (D) at Point G		
Q 5	5A: A cantilever with thin-walled channel cross section is subjected to a lateral force at its		
X -	shear center. The cantilever undergoes [1 Marks]		
	(A) bending without twisting		
	(B) bending and twisting		
	(C) neither bending nor twisting		
	(D) twisting without bending.		
	5B: When a closed section beam is subjected a pure torque, the shear flow in the section is		
	depends on: [1 Marks]		
	(A) Thickness of the section.		
	(B) Area of closed section.		
	(C) Material of the beam section.		
	(D) boundary condition of the beam.	_	
	5C: The thin rectangular tube shown below is made of a material with shear modulus, $G = 80$	5	CO2
	GPa. If the free end is allowed to twist no more than 0.0727 radians, then the maximum torque		
	(in <i>N</i>) which the tube can be subjected to at its free end is [3 Marks]		
	f T T 3mm		
	$\begin{array}{c} 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 3 \\ mm \end{array}$		
	40 mm l = 2 m		
Q 6	A plate 12 mm thick is subjected to bending moments M_x equal to 15 Nm/mm and M_y equal	5	CO3
	to 10 Nm/mm. The maximum bending stresses on the plate are and		
	SECTION B $(5 \times 10 = 50 \text{ Marks})$		
Q 7	An aircraft having a weight of 250 kN and a tricycle undercarriage, lands in such a way that		
ν,	the vertical and horizontal reactions on the main wheels are 1200 kN and 400 kN respectively;		
	at this instant the nose wheel is 1.0m off from the ground, as shown in Figure below. If the		
	mass moment of inertia of the aircraft about its CG is 5.65×10^8 Ns ² mm. Determine the		
	accelerations and inertia forces on the aircraft.		
	Nose wheel	10	CO1
	1.0 m^{-6} (6) 400 kN 2.5m		
	250 kN♥ 1200 kN		
	5.0 m		
	№ 1.0 m		

Q 8	If $\sigma_{b, max} = 160$ MPa, calculate the maximum moment M that can be applied on the section on a plane inclined at 30° from horizontal shown below. Also, calculate the orientation of the neutral axis.		
	$20 \text{ mm} \rightarrow 80 \text{ mm} \rightarrow 90 \text{ mm}$ $20 \text{ mm} \rightarrow 90 \text$	10	CO4
Q 9	A thin elastic square plate of side 'a' is simply supported on all four sides and supports a uniformly distributed load 'q'. if the origin of axes coincides with the center of the plate, show that the deflection of the plate can represented by the expression, $w = \frac{q}{96(1-\vartheta)D} [2(x^4 + y^4) - 3a^2(1-\vartheta)(x^2 + y^2) - 12\vartheta x^2 y^2 + A]$ Where D is the flexural rigidity, v is Poisson's ratio and A is constant. Calculate the values of A.	10	CO3
Q 10	With reference to the idealized section as shown in Figure below, all dimensions are in mm. Find the ratio of the shear flow $q_{34}:q_{23}$. Area of each booms are 150 mm ² .	10	CO4
Q 11	The figure below shows a Two cell closed section of an aluminum rubber tab subjected to a torque 5KN-m in anticlockwise direction. Determine the shear flow in the member 13. Also calculate the rate of twist of the section. Take $E_{al} = 70$ GPa, $G_{al} = 26$ GPa. Assume t = 5mm same for all members.	10	CO4

