Name:					
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES					
End Semester Examination, May 2021					
Programme Name: B.Tech., APE GasSemesterCourse Name: Reservoir Engineering - IITime		: VI : 03 hr	c		
Course Code : PEAU 4104P Max. Mar			5		
	Nos. of page(s) : 2				
Instructions: 1. Assume any data missing.					
	2. Attach any graphs and/or data sheets (if any) used to the answer sheets for evaluation	on			
SNo	SECTION A (6*5=30M)	Marks	CO		
Q 1	Identify the various expansion terms in the MBE and their sources.	5	CO1		
Q 2	Define the total formation volume factor and mention its significance	5	CO2		
Q 3	Define economic limit production rate and list the variables included in its estimation?	5	CO3		
Q 4	List various types of decline curves used to analyze production rates	5	CO3		
Q 5	Define coning and mobility ratio. Mention the significance of mobility ratio in coning.	5	CO3		
Q 6	Define diffusive flow and mention the conditions at which it would occur.	5	CO4		
	SECTION B (5*10=50M)				
	Determine the drive indices for the following reservoir data with negligible gas saturation:	10	CO1		
Q 7	N = $16.890*10^6$ stb; W _e = $1.773*10^6$ bbl; N _p = 1559001 stb; G _p = $9.866*10^8$ scf; R _{soi} = 650 scf(stb; P _p = 1.225 st (stb)				
	$650 \text{ scf/stb}; B_{ti} = 1.325 \text{ rb/stb}.$				
	The reservoir fluid data gathered at depletion pressure of 2264 psia is: $B_o = 1.308 \text{ rb/stb}; B_g = 0.0048 \text{ cf/scf}; R_s = 612 \text{ scf/stb}.$				
	A gas well producing from the Devonian formation in Ward County, Texas, is tested				
	periodically and the following data is collected:	10	CO2		
0.0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
Q 8	Ž 1.0045 0.9705 0.9525 0.9300 0.9102	10			
	Gp (MCF) 144,941 2,282,721 5,338,601 9,989,696 13,443,654				
	Calculate the original gas-in-place.				
Q 9	A well producing from a particularly tight reservoir produces 6292 bbls during its first				
	month of production. By the end of its twenty-seventh month of production, the rate has	10	CO3		
	dropped to 730 bbls/month, and cumulative production is 55,900 bbls. Calculate for n and				
	the percentage decline per month.				
	Derive an expression for maximum possible oil flow rate through a well, which penetrates a depth ' D_t ' into a oil zone of thickness ' h ' during gas coning				
	a deput D_t into a on zone of unexpress n during gas coming				
	GOC GOC	10	CO3		
Q10	Gas				
	Dt				
	h				
	Top of Perforations				
Q11	Derive an expression describing fractional flow of water in displacement of oil by water,	10	CO4		

	in one dimension tilted reservoir block with uniform cross sectional area				
SECTION-C (1*20=20M)					
Q12	A water-drive reservoir is of such size and shape that water encroachment to the first line of producers can be treated as linear flow. The water drive is sufficiently active that the fluid flow is steady state. The withdrawal rate from the reservoir averages 2830 RB/day. The reservoir data is as follows: Average formation dip = 15.5° ; Reservoir porosity = 21.5% ; Average width of reservoir = 8000ft; Reservoir thickness = 30 ft; Average cross-sectional area = 240000 ft ² ; Permeability = 108 md; Connate water saturation = 16% ; Reservoir oil specific gravity = 1.01; Oil viscosity = 1.51 cP; Reservoir water specific gravity = 1.05 ; Water viscosity = 0.83cP; the average distance from the original WOC to the first line of producers is 350 ft. a. Calculate the fractional flow values for this reservoir corresponding to the saturations listed in table below. $\frac{S_w 0.79 \qquad 0.75 \qquad 0.65 \qquad 0.55 \qquad 0.45 \qquad 0.35 \qquad 0.25 \qquad 0.16 \qquad (Critical) \qquad (Critical) \qquad (Critical) \qquad 0.02 \qquad 0.09 \qquad 0.23 \qquad 0.44 \qquad 0.73 \qquad 0.94 \qquad 0.98 \qquad (Critical) \qquad (Critical) \qquad 0.02 \qquad 0.09 \qquad 0.23 \qquad 0.44 \qquad 0.73 \qquad 0.94 \qquad 0.98 \qquad (Critical) \qquad (Critica$	20	CO4		