Name: Enrolment No:		UPES SAP ID: UNIVERSITY WITH A PURPOSE	
\left.UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End semester Examination, May’ 2021 $\right]$			
Section A			
Q1.	Explain principle of pressure-measuring devices like Bourdon tube and Manometer.	05	CO1
Q2.	Explain Kinematic Viscosity and Dynamic viscosity of fluid.	05	CO1
Q3.	Define hydraulic and mechanical losses in hydraulic machines.	05	CO1
Q4.	Define pipe roughness and Reynolds number for the flow through pipes.	05	CO1
Q5.	Explain in brief: i) Bulk Modulus of elasticity ii) Piezometer	05	$\mathrm{CO1}$
Q6.	Explain impulse and reaction turbine.	05	CO1
Section B			
Q1.	A Pelton wheel with single jet rotates at 750 rpm . The pitch circle diameter of the wheel 1.5 m and the buckets deflect the jet through an angle of 170°. The net head on the wheel is 500 m and discharge through the nozzle is $0.2 \mathrm{~m}^{3} / \mathrm{s}$. Determine the power available at the nozzle, and hydraulic efficiency of the turbine. Take coefficient of velocity as 0.98 .	10	CO2
Q2.	An unsteady velocity field is given by $u=t^{2}+3 y$ $v=4 t+5 x$ Calculate the acceleration at the point $(5,3)$ at time $t=2$ units	10	CO2
Q3	The velocity along the centerline of the Hagen-poiseuille flow in a 0.1 m diameter pipe is $2 \mathrm{~m} / \mathrm{s}$. If the viscosity of the fluid is $0.07 \mathrm{~kg} / \mathrm{ms}$ and its specific gravity is 0.92 , calculate volumetric flow rate	10	CO3
Q4.	The velocity along the centerline of the Hagen-poiseuille flow in a 0.1 m diameter pipe is $2 \mathrm{~m} / \mathrm{s}$. If the viscosity of the fluid is $0.07 \mathrm{~kg} / \mathrm{ms}$ and its specific gravity is 0.92 , calculate shear stress of the fluid at the pipe wall	10	CO3

Q5.	In Fig. 1 given below the flowing fluid is CO_{2} at $20^{\circ} \mathrm{C}$. Neglect losses. If $p_{1}=170 \mathrm{kPa}$ and the manometer fluid is Meriam red oil ($\mathrm{SG}=0.827$), estimate $(a) p_{2}$ and (b) the gas flow rate in $\mathrm{m}^{3} / \mathrm{h}$. Fig. 1: Arrangement for flow measurement	10	CO3
Section C			
Q1.	A reaction turbine operating under a head of 70 m runs at 400 rpm . Its diameter at inlet is 1 m and the flow area is $0.35 \mathrm{~m}^{2}$. The angle made by absolute and relative velocity at inlet are 15° and 45° respectively, with the tangential velocity. For radial discharge at outlet, find the volume flow rate, the power developed and hydraulic efficiency. OR A centrifugal pump delivers water against a net head of 10.0 m at a design speed of 1000 rpm. The vanes are curved backwards and make an angle of 30° with the tangent at the outer periphery. The impeller diameter is 30 cm and has a width of 5 cm at the outlet. Determine the discharge of the pump if the manometric efficiency is 95%.	20	CO3

