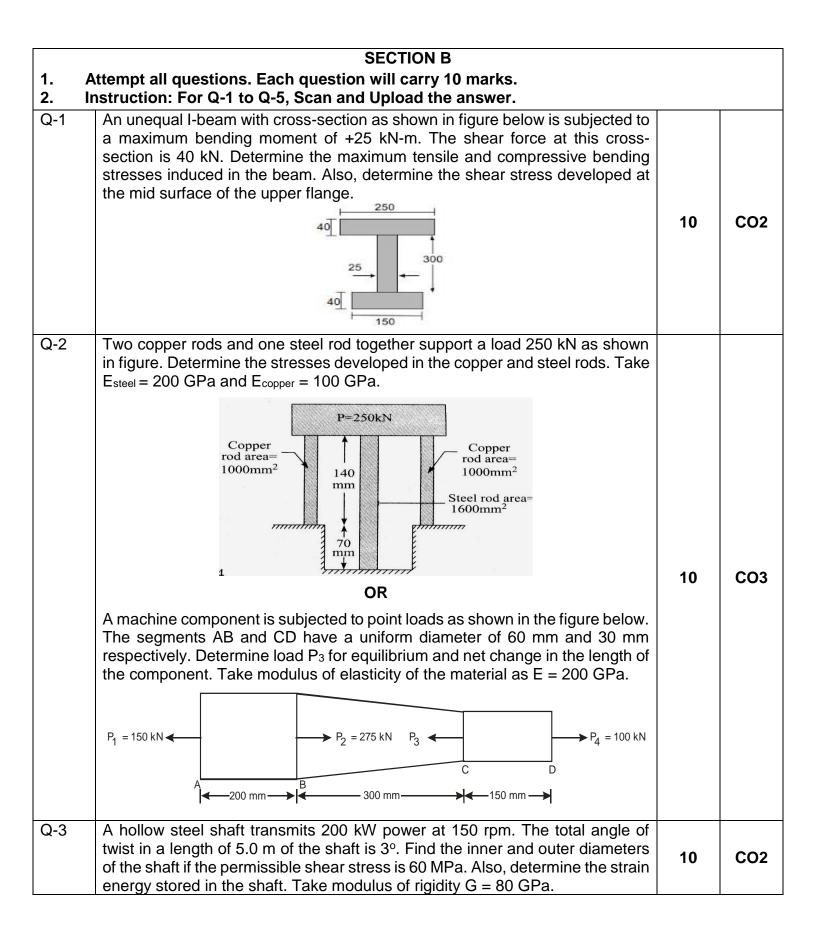
Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2021


Course: Strength of Materials Program: B. Tech. Mechatronics Corse Code: MECH 2012

Semester: IV Time: 3 Hours Max. Marks: 100

	SECTI	ON	Α	
-	-			

Attempt all questions. Each question will carry 5 marks.
Instruction: For Q-1 to Q-6. Type the final answer only

2. lı	nstruction: For Q-1 to Q-6, Type the final answer only.		
S. No.		Marks	СО
Q-1	A steel rod 30 mm diameter and 300 mm long is subjected to a tensile force P acting axially. The temperature of the rod is then raised through 80°C and the total extension measured as 0.35mm. Calculate the value of P. Take $E_s = 200$ GN/m ² and $\alpha_s = 12 \times 10^{-6}$ per °C.		C01
Q-2	A cantilever 6 m long carries a uniformly distributed load of 30 kN/m throughout the length. It is supported by an upward force 'P' at the free end so that the mid-point becomes point of contra-flexure. Determine the magnitude of force 'P'.		CO1
Q-3	Determine the support reactions A_x , A_y and B_y for the beam shown in the figure below. 5 kN + 4 kN + 1.5 kN/m + 1.5 kN/m + 2 m	5	CO1
Q-4	A material has modulus of elasticity $E = 200$ GPa. If the bulk modulus of the material K = 160 GPa, determine the Poisson's ratio and shear modulus of the material.	5	CO1
Q-5	A cylindrical boiler shell is to be made of 20 mm thick plate having a limiting tensile stress of 160 MPa. If the efficiencies of the longitudinal and circumferential joints are 80 % and 35 % respectively, determine the maximum permissible diameter of the shell for an internal pressure of 5.0 MPa.	5	CO4
Q-6	A thin spherical shell of 1.2 m diameter is to be subjected to an internal pressure of 1.5 MPa. Determine the change in volume of the sphere due to internal pressure. Take Elastic Modulus $E = 180$ GPa & Poisson's ratio $v = 0.3$.	5	CO4

Q-4	For the beam and loading shown in figure below, determine the deflection of the mid-point of the loaded beam. Take EI = $5.3 \times 10^5 \text{ Nm}^2$.	10	CO3
Q-5	A column has a rectangular cross-section of base 50 mm and height 150 mm. It is hinged at both the ends and has a length just sufficient for the validity of Euler's formula. Determine the Rankine's crippling load for a factor of safety 2, if Rankine's constant α = 1/1600. For the material of the column, take E = 200 GPa and σ_y = 250 MPa.	10	CO4
	SECTION C		
Q-1	Attempt all questions. Each question will carry 20 marks. Instruction: For Q-1, Scan and Upload the answer. The state of stress for a steel component is shown in figure below. Determine the magnitudes of principal stresses, maximum shear stress and position of principal planes. Draw the Mohr's stress circle and verify your answers.		CO2 CO4