Name: Enrolment No:			
SECTION A (6X5) : Attempt all the questions			
S. No.		Marks	CO
1	Choose the correct answer (MCQ type): 1.1 How many Half adder (HA) and OR gates are required to implement 4 bit parallel Full adder? A. $6 \mathrm{HA}+2$ OR gate B. $8 \mathrm{HA}+2$ OR gate C. $8 \mathrm{HA}+4$ OR gate D. $4 \mathrm{HA}+4$ OR gate	5	$\mathrm{CO3}$
2	Fill in the Blanks $2.1 \ldots \ldots \ldots \ldots \ldots \ldots$ criterion is required for sustained oscillations. 2.2 The operating point of the BJT must lies in.....................egion to perform the operation of amplifier. 2.3 To implement 16×1 MUX, 4×1 MUX are required. $2.4 \ldots \ldots \ldots \ldots$. are used to count the sequence.	5	CO1
3	True/false 3.1 To design amplifiers positive feedback network is employed? (T/F) 3.2 Microphone kept in front of the speaker is an example of negative feedback system. (T/F) 3.3 Common emitter configured BJT amplifier produced 180 degree phase shift across input and output nodes. (T/F) 3.4 IC 741 belongs to operational amplifier (OPAMP) (T/F)	5	CO1
4	Illustrate the necessity of feedback system for the amplifiers?	5	CO2
5	Explain the design criteria for the oscillators?	5	CO2
6	Convert the following numbers into corresponding number system (2.5 marks each) A. $(60)_{10}=(?)_{16}$ B. $(001010110010100)_{2}=(?)_{16}$ C. $(171)_{8}=(?)_{2}$ D. $(1 A 4)_{16}=(?)_{2}$	5	CO
SECTION B (5X10): Attempt all the questions			
7	For the given CE BJT configuration as shown in Fig.1, evaluate the DC operating Points ($\mathrm{I}_{\mathrm{CQ}}, \mathrm{V}_{\mathrm{CEQ}}$) and also comment on its operating region?	10	CO1

	Fig. 1		
8	Consider the given OPAMP network as shown in Fig. 2 and sketch the $\mathrm{V}_{\text {Out }}$ waveform with proper explanation and working? Fig. 2	10	CO2
9	Implement the following Boolean function with the suitable decoder (use only one decoder) (8 M)	10	CO3
10	Develop a full adder using two half adders. Support your circuit with the help of a truth table? OR Implement the 4 bit down counter bu using JK flip flop for number of states $=10$.	10	CO3

11	Evaluate the following for the given schematic below (Fig.4) (assume hie $=20 \mathrm{k}$) (a) Calculate Zi and Zo . (b) Find Av and Ai. (c) For $\mathrm{Vi}=500 \mathrm{mV} \sin 250 \mathrm{t}$ plot the output waveform Vo? Fig. 3	10	CO2
	Section C (1X20)		
12	Evaluate the components (R,C, $\mathrm{R}_{1}, \mathrm{R}_{2}$) the given figure below (Fig.4) and derive the relation for frequency of sustained oscillations to design the wien bridge oscillator. Comment on the nature of oscillations if $R_{2}=4 R_{1}$ and $R_{2}=0.5 R_{1}$. Draw neat sketch of the waveform for all the cases. ($\mathbf{1 2} \mathbf{~ M}$) Fig. 4	20	CO4

