Name: Enrolment No:		1 UPES UNIVERSITY WITH A PURPOSE		
Course Progra Course	UNIVE Strength of Materials Code: BNE FSE 227	PETROLEUM AND E d Semester Examinatio	GY STUDIES Semester: IV Time 03 hrs. Max. Marks: 100	
Each Question carries 5 Marks SECTION A				
S. No.	Question			CO
Q 1	Define: a. Elasticity b. Plasticity c. Hardness d. Yield stress e. Ultimate stress			CO1
Q2	Write short note on: a. Poisson's effect	b. Modulus of Rigidity	c. Stress Resilience	CO1
Q3	Explain gradual loading, sud	and impact loading.		CO2
Q4	Describe the concept of supp beam.	ine cantilever beam, sim	ported beam and overhanging	CO 2
Q5	Brief the effect of thermal str	posite bar (in words).		CO2
Q6	Explain the concept of flexur words).	and how it is related with	re of axis under bending (in	CO1
Each Question carries 10 Marks SECTION B				
Q 7 An element cube is subjected to tensile stresses of $110 \mathrm{~N} / \mathrm{mm}^{2}$ and $47 \mathrm{~N} / \mathrm{mm}^{2}$ acting on two mutually CO4 perpendicular planes. Each of the above stresses is accompanied by a shear stress of $63 \mathrm{~N} / \mathrm{mm}^{2}$, such that the one associated with the former tensile stress tends to rotate the element counterclockwise. Find the magnitude of the stresses on a plane inclined at 45° to the principle planes.				
Q 8	A flat steel of thickness 12 mm tapers uniformly from 80 mm at one end and 40 mm at the other end in a length of 500 mm . If the bar is subjected to a load of $80,000 \mathrm{~N}$, find its extension. Take $\mathrm{E}=200000$ $\mathrm{N} / \mathrm{mm}^{2}$. What is the percentage error if the average area is used for calculating the extension?			CO3
Q 9	A circular sheet of metal has radius R. if a hole of radius r is made as shown in figure, determine the position of centroid of the remaining part.			CO4

Q 10	Three bars, made of copper, zinc and aluminum are of equal length and have cross-section 0f 500, 750 and 1000 sq. mm respectively. They are rigidly connected at their ends, as shown in figure. If this compound member is subjected to a longitudinal pull of 200 kN , estimate the proportion of load carried by each rod and the induced stresses. Take $\mathrm{E}_{\mathrm{c}}=1.3^{*} 10^{\wedge} 5 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{E}_{\mathrm{z}}=1^{*} 10^{\wedge} 5 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{E}_{\mathrm{a}}=$ $0.8 * 10^{\wedge} 5 \mathrm{~N} / \mathrm{mm}^{2}$	CO 3
Q 11	A $300 * 300 \mathrm{~mm}$ timber is strengthened by the addition of $300 * 6.25 \mathrm{~mm}$ steel plates secured to its top and bottom surfaces. The composite beam is simply supported at its end and carries an uniformly distributed load of $25 \mathrm{kN} / \mathrm{m}$ run over an effective span of 6 m . Find the maximum bending stress in the steel and timber at the mid-span. $\mathrm{E}_{(\text {steel) }}=2^{*} 10^{\wedge} 5 \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{E}_{\text {(timber) }}=0.1^{*} 10^{\wedge} 5 \mathrm{~N} / \mathrm{mm}^{2}$.	CO3
	Each Question carries 20 Marks. Section C	
Q12	The S. F. diagram for a beam AB, hinged at both the ends is shown in figure. Determine the loading on the beam and draw the B. M. diagram, indicating principal values. The spacing of AC, CD, DE, EF and FD are $3 \mathrm{~m}, 4 \mathrm{~m}, 2 \mathrm{~m}, 1 \mathrm{~m}$ and 2 m respectively. All the values of shear forces has been mentioned in the diagram and all are in kN .	CO5

