Name: **Enrolment No:**

UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **Online End Semester Examination, May 2021**

Course: Strength of Materials Program: B. Tech. FSE **Course Code: GNEG 227**

Semester: IV Time 03 hrs. Max. Marks: 100

SECTION A		
Each Question carries 5 Marks		
S. No.	Question	СО
Q 1	Define:	CO1
	a. Elasticity	COI
	b. Plasticity	
	c. Hardness d. Yield stress	
	d. Yield stresse. Ultimate stress	
Q2	Write short note on:	CO1
Q2	a. Poisson's effect b. Modulus of Rigidity c. Stress Resilience	COI
Q3	Explain gradual loading, sudden loading and impact loading.	CO2
Q4	Describe the concept of supports to define cantilever beam, simple supported beam and overhanging	CO2
	beam.	
Q5	Brief the effect of thermal stress on composite bar (in words).	CO2
0.6		001
Q6	Explain the concept of flexural rigidity and how it is related with curvature of axis under bending (in words).	CO1
	wolds).	
	SECTION B	
Each Question carries 10 Marks		
	Lacii Questioli carries 10 Marks	
Q 7	An element cube is subjected to tensile stresses of 110 N/mm ² and 47 N/mm ² acting on two mutually	CO4
	perpendicular planes. Each of the above stresses is accompanied by a shear stress of 63 N/mm ² , such	
	that the one associated with the former tensile stress tends to rotate the element counterclockwise. Find the magnitude of the stresses on a plane inclined at 45° to the principle planes	
Q 8	the magnitude of the stresses on a plane inclined at 45° to the principle planes. A flat steel of thickness 12 mm tapers uniformly from 80 mm at one end and 40 mm at the other end in	
Q 0	a length of 500 mm. If the bar is subjected to a load of 80,000 N, find its extension. Take $E = 200000$	CO3
	N/mm^2 . What is the percentage error if the average area is used for calculating the extension?	
Q 9	A circular sheet of metal has radius R. if a hole of radius r is made as shown in figure, determine the	
	position of centroid of the remaining part.	CO4
1		

