Name: Enrolment No:			
SECTION-A (30 Marks)			
Q1	(i) Which of these is correct? (a) $A \times A=\|A\|^{2}$ (b) $A \times B+B \times A=0$ (c) $A \cdot B \cdot C=B \cdot C \cdot A$ (d) $a_{x} \cdot a_{y}=a_{z}$ (e) $\mathrm{a}_{k}=\mathrm{a}_{x}-\mathrm{a}_{y}$, where a_{k} is a unit vector (ii) Which of the following is zero? (a) grad div (c) curl grad (b) div grad (d) curl curl (iii) Equation $\nabla^{2} V=-\rho / \epsilon$ is called the (a) Poisson's equation (b) Laplace equation (c) Continuity equation (d) None (iv) A vector field is given by $\mathrm{A}=3 \mathrm{xy} \mathrm{a}_{\mathrm{x}}-\mathrm{y}^{2} \mathrm{a}_{\mathrm{y}}$. find $\int A . d l$ along the curve $\mathrm{y}=2 \mathrm{x}^{2}$ in the xy plane from $(0,0)$ to $(1,2)$ (a) $-9 / 2$ (b) $7 / 6$ (c) $-7 / 6$ (d) $2 / 3$	$\begin{gathered} 1+1+1 \\ +2 \end{gathered}$	CO1
Q2	(i) In a uniform electric field, field lines and equipotential (a) are parallel to one another (b) intersect at 45° (c) intersect at 30° (d) are orthogonal (ii) When a charge is given to a conductor (a) It distributes uniformly all over the surface (b) It distributes uniformly all over the volume (c)It distributes on the surface, inversely proportional to the radius of curvature (d) It stays where it was placed. (iii) Two infinite parallel metal plates are charged with equal surface charge density of the same polarity. The electric field in the gap b / w the plates is	$\begin{gathered} 1+1+1 \\ +2 \end{gathered}$	CO2

	(a) The same as that produced by one plate (b) Double of the field produced by one plate (c) Dependent on coordinates of the field point (d) Zero (iv) Consider the following statements regarding field boundary conditions: 1. The tangential component of electric field is continuous across the boundary between two dielectrics. 2. The tangential component of electric field at a dielectric - conductor boundary is non - zero 3. The discontinuity in the normal component of the flux density at a dielectric conductor boundary is equal to the surface charge density on the conductor. 4. The normal component of the flux density is continuous across the charge free boundary between two dielectrics. Of these statements (a) $1,2 \& 3$ are correct (b) $2,3 \& 4$ are correct (c) $1,2 \& 4$ are correct (d) $1,3 \& 4$ are correct		
Q3	(i) In ferromagnetic materials, the net magnetic moment created due to magnetization by an applied field is: (a) Normal to the applied field (b) Adds to the applied field (c) In line with magneto motive force (d) Subtracts from the applied field (ii) At what temperatures domains lose their ferromagnetic properties? (a) Above ferromagnetic Curie temperature (b) Below paramagnetic Curie temperature (c) Above $4^{\circ} \mathrm{K}$ (d) At room temperature (iii) Magnetic flux density at a point distance R due to an infinitely long linear conductor carrying a current I is given by (a) $\frac{1}{2 \pi \mu R}$ (b)) $\frac{\mu I}{2 R}$ (c) $\frac{\mu I}{2 \pi R}$ (d) $\frac{\mu I}{2 \pi R^{2}}$ (iv) Plane $y=0$ carries a uniform current of $30 \mathbf{a}_{z} \mathrm{~mA} / \mathrm{m}$. At (1, 10, -2), the magnetic field intensity is (a) $-15 \mathbf{a}_{x} \mathrm{~mA} / \mathrm{m}$ (b) $15 \mathbf{a}_{x} \mathrm{~mA} / \mathrm{m}$ (c) $477.5 \mathbf{a}_{y} \mathrm{~mA} / \mathrm{m}$ (d) $18.85 \mathbf{a}_{y} \mathrm{nA} / \mathrm{m}$	$\begin{gathered} 1+1+1 \\ +2 \end{gathered}$	CO3
Q4	(i) Which of the following Maxwell's equations represents Ampere's law with correction made by Maxwell? (a) $\nabla \cdot E=\rho / \epsilon_{0}$ (b) $\nabla \cdot B=0$ (c) $\nabla \times E=-\frac{\partial B}{\partial t}$ (d) $\nabla \times H=J+\varepsilon_{0} \frac{\partial E}{\partial t}$ (ii) The electric field component of a wave in free space is given by $\mathbf{E}=10 \cos \left(10^{7} t+\right.$ $k z) \mathbf{a}_{y} \mathrm{~V} / \mathrm{m}$. It can be inferred that (a) The wave propagates along a_{y} (b) The wavelength $\lambda=188.5 \mathrm{~m}$ (c) The wave number $k=0.33 \mathrm{rad} / \mathrm{m}$ (e) The wave attenuates as it travels	1+2+2	CO4

	(iii) Given that $\mathbf{H}=0.5 e^{-0.1 x} \sin \left(10^{6} t-2 x\right) \mathbf{a}_{z} \mathrm{~A} / \mathrm{m}$, which of these statements are incorrect? (a) $\alpha=0.1 \mathrm{~Np} / \mathrm{m}$ (b) $\beta=22 \mathrm{rad} / \mathrm{m}$ (c) $\omega=10^{6} \mathrm{rad} / \mathrm{s}$ (d) The wave travels along \mathbf{a}_{x}.		
Q5	(i) Two identical coaxial circular coils carry the same current I but in opposite directions. The magnitude of the magnetic field \mathbf{B} at a point on the axis midway between the coils is (a) Zero (b) The same as that produced by one coil (c) Twice that produced by one coil (d) Half that produced by one coil. (ii) Which of the following statements are not true about electric force \mathbf{F}_{e} and magnetic force \mathbf{F}_{m} on a charged particle? (a) \mathbf{E} and \mathbf{F}_{e} are parallel to each other, whereas \mathbf{B} and \mathbf{F}_{m} are perpendicular to each other. (b) Both F_{e} and F_{m} depend on the velocity of the charged particle. (c) Both \mathbf{F}_{e} and \mathbf{F}_{m} are produced when a charged particle moves at a constant velocity. (d) \mathbf{F}_{m} is generally small in magnitude in comparison to \mathbf{F}_{e}. (iii) Identify the statement that is not true of ferromagnetic materials. (a) They have a large χ_{m}. (b) They have a fixed value of μ_{r}. (c) Energy loss is proportional to the area of the hysteresis loop. (d) They lose their nonlinearity property above the curie temperature.	2+2+1	CO3
Q6	State the following laws: Coulomb's law; Gauss law. Also mention the applications of Gauss law.	5	CO2
SECTION-B (50 Marks)			
Q1	If $A=\rho \cos (\varnothing) a_{\rho}+\sin (\varnothing) a_{\rho}$, evaluate $\oint A . d l$ around the path shown in Fig. 1. Confirm this by Stokes's theorem.	10	CO1

	Fig. 3 (b) Let us assume that $\mu=\mu_{1}=4 \mu \mathrm{H} / \mathrm{m}$ in region 1 where $z>0$, whereas $\mu_{2}=7 \mu \mathrm{H} / \mathrm{m}$ in region 2 wherever $z<0$. Moreover, let $\mathbf{K}=80 \mathbf{a}_{x} \mathrm{~A} / \mathrm{m}$ on the surface $z=0$. We establish a field, $\mathbf{B}_{1}=2 \mathbf{a}_{x}-3 \mathbf{a}_{y}+\mathbf{a}_{z} \mathrm{mT}$, in region 1 and find the value of \mathbf{B}_{2}.		
	SECTION-C (20 Marks)		
Q1	A plane wave with $E=30 e^{-\alpha z} \sin (\omega t-z) a_{x} \mathrm{~V} / \mathrm{m}$ is propagating through a lossy dielectric medium having an intrinsic impedance of $300 \angle 30^{\circ}$ and $\mu_{\mathrm{r}}=1$. (a) Determine the phasor and instantaneous field expressions for H (b) Find the loss tangent, propagation constant, wave polarization and the dielectric constant of the medium at 15 MHz (c) Determine the skin depth and the depth at which the amplitude of the field is 1% of the value at $\mathrm{z}=0$. OR A plane wave travelling in the +z direction in free space $(\mathrm{z}<0)$ is normally incident at $\mathrm{z}=$ 0 on a conductor ($\mathrm{z}>0$) for which $\sigma=61.7 \mathrm{MS} / \mathrm{m}, \mu_{\mathrm{r}}=1$. The free space wave has a frequency of 2.5 MHz . the E field amplitude is $1.5 \mathrm{~V} / \mathrm{m}$ at the interface. Find the expression for H in the conductor. Also find the loss tangent and skin depth.	20	CO4

