Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, May 2021			
	Semester: IV Time 03 hrs . Max. Marks: 100		
- Attempt all questions as per the instruction. - Assume any data if required and indicate the same clearly. - Unless otherwise indicated symbols and notations have their usual meanings. - Strike off all unused blank pages			
SECTION AWrite only answer in the text box(for S.No:1, 2 \& 5 write ONLY the final answer)			
S. No.	Question	Marks	CO
Q1.	Find the even and odd components of the signal $x(t)=\cos t+\sin t+\cos t \sin t$.	5	CO1
Q2.	Define energy of the signal and find whether the given $\mathrm{x}(\mathrm{n})=\left(\frac{1}{3}\right)^{n} \mathrm{u}(\mathrm{n})$ is an energy signal or power signal	5	CO2
Q3.	List the Applications of Laplace transform with examples.	5	CO3
Q4.	Distinguish Fourier transform and discrete Fourier transform	5	CO4
Q5.	Which of the signals are causal and non causal? (a) $x(t)=e^{2 t} u(-t+2)$ (b) $\mathrm{y}(\mathrm{t})=\mathrm{u}[\mathrm{t}+2]-\mathrm{u}[\mathrm{t}-2]$ c) $x[n]=\{1,-1,2,2\}$ (d) $x[n]=2^{n} u[-n]$ (e) $Y(t)=2 x\left(t^{2}\right)$;	5	CO1
Q6.	Write the relation between DTFT and Z plane (write in statement no need of equations)	5	CO5
SECTION B $\quad \mathbf{5 \times 1 0}=\mathbf{5 0}$			
Q7.	Sketch the waveforms of the following signals: (a) if $\mathrm{x}(\mathrm{t})=\mathrm{u}(\mathrm{t}+3)-\mathrm{u}(\mathrm{t}-1)$ (b) $x(t)=e^{-2 t} u(-2+t)$	10	CO1
Q8.	Find the Fourier Transform of (i) $\mathrm{x}(\mathrm{t})=\mathrm{e}^{-2 \mathrm{t}} \mathrm{u}(\mathrm{t}-4)$ (ii) $\mathrm{x}(\mathrm{t})=\cos \omega \mathrm{t}(\mathrm{t})$	10	CO2

Q9.	Explain about the significance of LT in determining the Initial and Final values of a function in time domain. Find the initial value and final value of the function $X(s)=\frac{(s+5)}{\left(s^{2}-3 s+2\right)}$	10	CO3
Q10	Determine the voltage across the resistor as a function of time for $t>0$. If the current in the circuit $\mathrm{i}(0)=\mathrm{Vc}(0)=0$ from the figure 1 using suitable transform. Fig 1	10	CO4
Q11.	Answer any two (a)Determine the Z.T and ROC of the causal sequence $x[n]=\{1,2,-2,-4,1\}$ (b)Determine Z.T and ROC $(2 / 3)^{\mathrm{n}} \mathrm{u}[\mathrm{n}]+(-1 / 2)^{\mathrm{n}} \mathrm{u}[\mathrm{n}]$. (c)Consider the signal $x[n]=\left(\frac{1}{5}\right)^{n} u[n-3]$, Evaluate the z-transform of this signal and specify the corresponding region of convergence	10	CO4
SECTION C		$5 \times 10=50$	
Q12.	(a) A linear time invariant (LTI) system is characterized by the system function $H(z)=\frac{3-4 z^{-1}}{1-3.5 z^{-1}+1.5 z^{-2}}$. Specify the region of convergence and determine $\mathrm{h}[\mathrm{n}]$ when (i) the system is stable (ii) the system is causal (iii) Determine the difference equation representation of this LTI system. (b)Using Z.T find convolution of two sequences	12+8	CO5

	$X_{1}[n]=\{1,1,0,-1,0,3\} \& X_{2}[n]=\{1,1,-1\}$	

