Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, May 2021

Course: Signals and System Program: B.Tech Electrical Engineering Course Code: ECEG 2032

Instructions:

- Attempt all questions as per the instruction.
- Assume any data if required and indicate the same clearly.
- Unless otherwise indicated symbols and notations have their usual meanings.
- Strike off all unused blank pages

SECTION A Write only answer in the text box(for S.No:1, 2 & 5 write ONLY the final answer)

S. No.	Question	Marks	CO
Q1.	Find the even and odd components of the signal $x(t) = \cos t + \sin t + \cos t \sin t$.	5	CO1
Q2.	Define energy of the signal and find whether the given $x(n) = \left(\frac{1}{3}\right)^n u(n)$ is an energy signal or power signal	5	CO2
Q3.	List the Applications of Laplace transform with examples.	5	CO3
Q4.	Distinguish Fourier transform and discrete Fourier transform	5	CO4
Q5.	Which of the signals are causal and non causal?	5	
	(a) $x(t) = e^{2t}u(-t+2)$ (b) $y(t) = u[t+2] - u[t-2]$ c) $x[n] = \{1,-1,2,2\}$ (d) $x[n] = 2^n u[-n]$ (e) $Y(t) = 2x(t^2);$		CO1
Q6.	Write the relation between DTFT and Z plane (write in statement no need of equations)	5	CO5
	SECTION B		5x10=50
Q7.	Sketch the waveforms of the following signals:		
	(a) if $x(t) = u(t + 3) - u(t - 1)$ (b) $x(t) = e^{-2t}u(-2 + t)$	10	C01
Q8.	Find the Fourier Transform of (i) $x(t) = e^{-2t} u(t-4)$ (ii) $x(t) = \cos\omega t u(t)$	10	CO2

Semester: IV Time 03 hrs. Max. Marks: 100

6x 5=30

Q9.	Explain about the significance of LT in determining the Initial and Final values of a function in time domain. Find the initial value and final value of the function $X(s) = \frac{(s+5)}{(s^2 - 3s + 2)}$	10	CO3
Q10. Q11.	Determine the voltage across the resistor as a function of time for t>0. If the current in the circuit $i(0) = Vc(0)=0$ from the figure 1 using suitable transform. $\overbrace{\delta(t) + v_{c}(t) + $	10	CO4
	(a)Determine the Z.1 and ROC of the causal sequence $x[n] = \{1, 2, -2, -4, 1\}$ (b)Determine Z.T and ROC $(2/3)^n u[n] + (-1/2)^n u[n]$. (c)Consider the signal $x[n] = \left(\frac{1}{5}\right)^n u[n-3]$, Evaluate the z-transform of this signal and specify the corresponding region of convergence	10	CO4
	SECTION C		5x10=50
Q12.	 (a) A linear time invariant (LTI) system is characterized by the system function H(z) = 3-4z⁻¹/(1-3.5z⁻¹+1.5z⁻²). Specify the region of convergence and determine h[n] when (i) the system is stable (ii) the system is causal (iii) Determine the difference equation representation of this LTI system. (b)Using Z.T find convolution of two sequences 	12+8	CO5

	$X_1[n] = \{1,1,0,-1,0,3\} \& X_2[n] = \{1,1,-1\}$			
--	--	--	--	--