Name: Enrolment No:			
Course: \quad Digital Electronics Semester: III Program: \quad B. Tech ELE Time 03 hrs. Course Code: ECEG 2016 Max. Marks: 100 Instructions: 			
Each Question will carry 5 Marks Instruction: Complete the statement / Select the correct answer(s)/write a few words			
S. No			CO
Q 1	Convert the following octal num i) 132.456 ii) 345.301		CO1
Q 2	Represent the following decima i) -64 ii) 67	representation using 8 bits	CO1
Q 3	Simplify the following expression : $\mathrm{Y}=\operatorname{sigma} \mathrm{m}(0,1,2,3,4,5,6)$		CO2
Q 4	Find the Gray codes for the follo a) 10001000 b) 01011100		CO1
Q5	Find the minterms of the function Y		CO3
Q6	Explain in brief about the semicondu		CO3
Each question will carry 10 marks Instruction: Write short / brief notes			
Q 1	Design a combinational logic circuit with four input variables that will produce logic 1 when the number of 1 s in the input is ODD.Implement a full subtractor using two 4:1 MUX		CO4
Q 2	Minimize the following logic function using K-Map : i) $\mathrm{Y}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=$ sigma $\mathrm{m}(, 1,2,3,5,7,8,13,14)$		CO2

	ii) $Y(A, B, C, D)=$ pi $M(0,2,8,12,13,14)$	
Q 3	Design a mod 8 ripple counter using T-Flipflop and draw the output waveforms	CO4
Q 4	Implement the following output functions using a suitable PLA $\begin{aligned} & \text { F1(A,B,C,D)=sigma } m(3,7,8,9,11,14) \\ & \text { F2(A,B,C,D) }=\operatorname{sigma} m(3,4,5,7,11,14,15) \\ & \text { F3(A,B,C,D) }=\operatorname{sigma} m(1,5,6,11,15) \end{aligned}$	CO 3
Q 5	Explain the operation of R-2R ladder D/A converter and weighted resistor D/A converter. Also Explain the Flash type A/D converter	CO4
SECTION-C		
Each Question carries 20 Marks. Instruction: Write long answer.		
Q 1	a) Design a two bit comparator using suitable decoder b)Develop and analyze a Parallel in parallel out and parallel in serial out shift register with JK-Flip flop	CO 4

