Name: Enrolment No:			
Prog Cour Cour Nos.	UNIVERSITY OF PETROLEUM AND ENERGY STUD End Semester Examination, May 2021 me Name: B.Tech ECE Name: Analog Electronics II Code: ECEG 2014 age(s): 1	ES ester: I : 03 hrs Marks	
SECTION A (6X5): Attempt all the questions			
S. No.		Marks	CO
1	Fill in the Blanks 1.1 The monostable multivibrator has \qquad Quasi-stable state and \qquad stable state. \qquad filter is able allow the band of the frequencies. 1.3 \qquad Criterion is required for sustained oscillations. 1.4 The operating point of the BJT must lies in. \qquad region to perform the operation of amplifier.	5	CO1
2	True/false 3.1 To design amplifiers positive feedback network is employed? (T/F) 3.2 Microphone kept in front of the speaker is an example of negative feedback system. (T/F) 3.3 Common emitter configured BJT amplifier produced 180 degree phase shift across input and output nodes. (T/F) 3.4 IC 741 belongs to operational amplifier (OPAMP) (T/F)	5	CO2
3	Choose correct answer (MCQ type) 3.1 The feedback factor of a Wien bridge oscillator using Op-Amp is A. $1 / 3$ B. $1 / 2$ C. 1 D. $1 / 4$ 3.2 Colpitts oscillator is also called as A. Tank circuit oscillator B. LC oscillator C. Resonant circuit oscillator D. All of the above 3.3 The Barkhausen criterion for an oscillator A. Loop gain should be unity B. Loop gain should be less than unity C. The phase of a feedback signal with respect to input should be 0° or 360° D. Both A and C	5	CO1

| 4 | Define the Slew rate for OPAMP. Compute the maximum input frequency if $\mathrm{Vo}=$
 $100 \mathrm{mSin} 2 \pi \mathrm{ft}$ for $\mathrm{SR}=10 \mathrm{~V} / \mathrm{us}$. ? | $\mathbf{5}$ | $\mathbf{C O 2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | Compute the outpout volatege Vo for the given OPAPM based schematic in Fig $1, ?$ | | |

