Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End term Examination, May/June 2021			
SECTION A			
S. No.		Marks	CO
Q 1	Define the terms: process, cycle, intensive and extensive properties.	5	CO1
Q 2	State the Perpetual Motion Machine of first and second kind and explain why it is not possible to make such kind of machine.	5	CO1
Q 3	Enlist the all five basic types of pdv-work with the equation.	5	CO1
Q4	Derive an expression of Air standard efficiency of Otto cycle with neat sketch on PV and T-S diagram.	5	CO2
Q5	State (a) Carnot theorem, (b) Kelvin-Planck statement and (c) Clausius statement	5	CO2
Q6	Enlist four different types of temperature measurement system briefly.	5	CO2
SECTION B			
Q 5	Show the triple point and critical point of water on (a) pressure-volume diagram with constant temperature line (b) enthalpy-entropy diagram with constant volume and pressure line and (c) volume-heat diagrams at atmospheric pressure. OR Ten grams of water at $20^{\circ} \mathrm{C}$ is converted into ice at $-10^{\circ} \mathrm{C}$ at constant atmospheric pressure. Assuming the specific heat of liquid water to remain constant at $4.2 \mathrm{~J} / \mathrm{gK}$ and that of ice to be half of this value, and taking the latent heat of fusion of ice at $0^{\circ} \mathrm{C}$ to be $335 \mathrm{~J} / \mathrm{g}$, calculate the total heat removed.	10	CO 3
Q 6	A fluid system undergoes a non-flow frictionless process following the pressure volume relation as follows. $\mathrm{P}=\frac{5}{\mathrm{~V}}+1.5$ Where P is pressure in bar and V is the volume in m^{3}. Determine the final volume and pressure of the system. During the process the volume changes from $0.15 \mathrm{~m}^{3}$ to	10	$\mathrm{CO4}$

	$0.05 \mathrm{~m}^{3}$ and the system rejects 45 KJ of heat to surroundings. Determine: (a) change in internal energy and (b) change in enthalpy.		
Q7	A gas expands from $0.2 \mathrm{~m}^{3}$ to $0.4 \mathrm{~m}^{3}$ isobarically at 50 bar and followed by polytropic expansion process $\mathrm{n}=1.3$ to a volume $0.8 \mathrm{~m}^{3}$. After that at constant volume cools down to a lower pressure. Plot the process on PV diagram and find the total work done.	10	CO3
Q8	A reversible engine operates between temperatures T_{1} and $\mathrm{T}\left(\mathrm{T}_{1}>\mathrm{T}\right)$. A second reversible engine at the same temperature " T " receives the energy rejected from this engine. The second engine rejects energy at temperature $T_{2}\left(T_{2}<T\right)$. Show that temperature T is the arithmetic mean of temperatures T_{1} and T_{2} if the engines produce the same amount of work output. OR It is given that temperature of the source and sink are equal to T_{h} and T_{L}. If the source and sink are finite i.e. as the heat engine operates the temperature of source fall and temperature of sink rises to an equilibrium temperature T_{f}. By the entropy principle prove that the T_{f} is an geometric mean of T_{H} and T_{L}.	10	CO 2
Q9	Show the triple point and critical point of water on (a) pressure-volume diagram with constant temperature line (b) enthalpy-entropy diagram with constant volume and pressure line and (c) volume-heat diagrams at atmospheric pressure.	10	CO2
SECTION-C			
Q 10	A single cylinder engine with 0.25 liter swept volume and Compression Ratio $=10$, operates on a 4 -stroke cycle. It is connected to a dynamometer, which gives a brake output torque reading of $15 \mathrm{~N}-\mathrm{m}$ at 6000 rpm . The Air/Fuel=13, and mechanical efficiency of the engine is 98%. At the start of compression, the cylinder gas pressure is 100 kPa , and temperature is $40^{\circ} \mathrm{C}$. . Calculate (1) air consumption rate $(\mathrm{kg} / \mathrm{h})$; (2) fuel consumption rate (kg / h); (3) brake thermal efficiency; (Ideal gas constant, $\mathrm{R}=0.287 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$, fuel calorific value $\left(\mathrm{Q}_{\mathrm{LHV}}\right)=43000 \mathrm{~kJ} / \mathrm{kg}$)	20	CO4

