Name: Enrolment No:		
Course Progra Course Instruc	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, May 2021 Numerical Methods Code: MATH 2017G Semester: B.Sc. (Hons.) Physics/ B.Sc. (Hons.) Chemistry ons: All questions are compulsory.	V rs. ks: 100
SECTION A (Each question carries 5 marks)		
S. No.		Marks
Q1	Which of the following relation is true? A. $E=\nabla^{-1}$ B. $E=(1+\nabla)^{-1}$ C. $E=(1-\nabla)^{-1}$ D. None of these	$\mathrm{CO1}$
Q2	Newton-Raphson method states that. A. $f(x)=0$, where f assumed to have a continuous derivative $f^{\prime}, x_{n+1}=$ $x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$ B. $f(x)=0$, where f assumed to have a continuous derivative $f^{\prime}, x_{n+1}=$ $x_{n}+\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$ C. $(x)=0$, where f assumed to have a continuous derivative $f^{\prime}, x_{n+1}=\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$ D. None of these	CO2
Q3	The factorial notation form of the polynomial $f(x)=2 x^{3}-3 x^{2}+3 x-10$ is ___	CO3
Q4	The Value of the integral $I=\int_{0}^{1}(1 /(1+x)) d x$ by dividing the interval of integration into 8 equal part and by applying the Simpson's $1 / 3^{\text {rd }}$ rule is is \qquad	CO4
Q5	Match the following: A. Newton-Raphson 1. Integration B. Runge-kutta 2. Root finding C. Gauss-seidel 3. Ordinary Differential Equations D. Simpson's Rule A. A2-B3-C4-D1 B. A3-B2-C1-D4 C. A1-B4-C2-D3 D. A4-B1-C2-D3	$\mathrm{CO1}$

Q6	Which of the following is true for backward difference operator? A. $\nabla^{2} f(x)=f(x-2 h)-2 f(x-h)+f(x)$ B. $\nabla^{2} f(x)=f(x-2 h)+2 f(x-h)+f(x)$ C. $\nabla^{2} f(x)=f(x-2 h)-2 f(x-h)-f(x)$ D. None of these								CO3
SECTION B (Each question carries 10 marks)									
Q7	Solve the following system of linear equations by Jacobbi’s method $\begin{aligned} & 11 x_{1}+17 x_{2}+18 x_{3}+16 x_{4}=10 \\ & 23 x_{1}+27 x_{2}+25 x_{3}+28 x_{4}=20 \\ & 22 x_{1}+32 x_{2}+34 x_{3}+36 x_{4}=30 \\ & 12 x_{1}+15 x_{2}+41 x_{3}+36 x_{4}=40 \end{aligned}$ Perform two iterations.								CO5
Q8	Consider the equation $x^{2}-\ln x-2=0$. Rewrite the equation in form of $x=\phi(x)$, to find a real root of the equation using Fixed point iteration method. Hence find the root of the equation which lies between 1 and 2 . Perform four iterations.								CO2
Q9	Use Lagrange's interpolation formula to fit a polynomial to the following data. Hence find $y(1)$.								$\mathrm{CO3}$
	x	-1	0						
	$y=f(x)$	-6	5	1					
Q10	A rocket is launched from ground. Its acceleration $\left(f \mathrm{~cm} / \mathrm{s}^{2}\right)$ is registered during the first 60 seconds, and is given in table below. Find the velocity $(v \mathrm{~cm} / s)$ of the rocket at $t=60$ seconds.								$\mathrm{CO4}$
	t	0	10	20	30	40	50	60	
	f	30	31.63	33.34	35.47	37.75	40.33	43.25	

Q11	A slider in a machine moves along a fixed straight rod. Its distance ' x ' cm along the road is given blow for various value of ' t ' second. Find the velocity and acceleration of the slider when $t=0.1 \mathrm{sec}$.								CO4
	t :	0	0.1	0.2	0.3	0.4	0.5	0.6	
	X	30.13	31.62	32.87	33.64	33.95	33.81	33.24	
SECTION-C (This question carries 20 marks)									
Q 12	Find y for $\mathrm{x}=0.1$ and 0.2 for $\frac{d y}{d x}=\frac{y^{2}-2 x}{y^{2}+x}$ given that $\mathrm{y}(0)=1$ by Runge-Kutta method of fourth order by taking $\mathrm{h}=0.05$ OR Using Euler's method, find y for $\mathrm{x}=0.1,0.2,0.3$ given that $\frac{d y}{d x}=x y+y^{2}, \mathrm{y}(0)=1$. Continue the solution at $\mathrm{x}=0.4$ using Milne's method.								CO6

