| Name: <br> Enrolment No: |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  | 100 <br> led figur | and |
| SECTION A |  |  |  |
| S. No. |  | Marks | CO |
| Q 1 | Define (i) Crippling load, (ii) Hoop Stress, (iii) Strain Energy, (iv) Factor of Safety and (v) Slenderness Ratio. | 05 | CO1 |
| Q 2 | Explain (i) Modulus of Elasticity and (ii) Bulk Modulus. Consider the case if $\mathrm{E}_{\mathrm{S}}=3 \mathrm{E}_{\mathrm{a}}$ for a composite bar made of aluminum and steel strips each having a cross sectional area of $300 \mathrm{~mm}^{2}$ and subjected to an axial load of 12 kN . Compute the stress in steel of this composite bar. | 05 | CO1 |
| Q 3 | Explain (i) Angle of Repose, (ii) Euler's formula, (iii) Indeterminate Beam (iv) Varignon's Theorem and (v) Torque | 05 | CO1 |
| Q 4 | Draw technically labelled shear force diagram and bending moment diagram for simply supported beam subjected to point load at the center of the beam, with relevant mathematical expressions. | 05 | CO3 |
| Q 5 | Enumerate any five methods to determine slope and deflection at a point of a beam. | 05 | CO4 |
| Q 6 | Prove that $U_{b} / U_{c}=\left(d_{c} / d_{b}\right)^{2} . \mathrm{E}_{\mathrm{c}} / \mathrm{E}_{\mathrm{b}}$ is the ratio of strain energies of two circular bars of equal length, and made of brass and copper subjected to same axial tensile load. Consider $\mathrm{d}=$ diameter, and E is young's modulus | 05 | CO1 |
| SECTION B |  |  |  |
| Q 6 | A shaft transmits 800 kW of power at 210 rpm . Determine the actual working stress and the diameter of the shaft if the shaft twists one degree on a length of 18 diameter and the shear stress is not to exceed 50 MPa . Consider $\mathrm{G}=81 \mathrm{GPa}$. | 10 | CO2 |
| Q 7 | Consider a cylindrical shell of 800 mm internal diameter, 2 m length, and wall thickness of 10 mm , which is subjected to internal pressure of 1.5 MPa . Compute (i) maximum intensity of the induced shear stress, and (ii) the change in dimensions of the shell. $\mathrm{E}=205 \mathrm{GPa}$ and $\mathrm{v}=0.3$. | 10 | CO2 |
| Q 8 | A 140 MPa maximum stress is induced in a 1.6 m long bar by means of an axial pull as shown in the figure. The larger and smaller arear of cross-section are 240 mm 2 and 120 mm 2 . Determine the strain energy stored in the bar. | 10 | CO2 |


|  |  |  |  |
| :---: | :---: | :---: | :---: |
| Q 9 | Draw the free body diagram, and compute the reaction forces for the beam shown below. Draw the SFD and BMD. | 10 | CO3 |
| Q 10 | Draw the free body diagram, and compute the reaction forces for the beam shown below. | 10 | CO3 |
|  | SECTION-C |  |  |
| Q 11 | Determine the maximum bending moment and the deflection of a beam of length ' l ' and flexural rigidity EI. The beam is fixed horizontally at both ends and carries a uniformly distributed load w over the whole span. | 20 | CO4 |

