Name: Enrolment No:			
Course Progra Cours Instru	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, May 2021 Onermodynamics -II Semester: IV m: B. Tech (CE+RP) Time: 3 hrs Code: CHCE 2016 Max. Marks: tions: (1) Answer ALL questions (2) Assume the appropriate value of missing data, if any. (3) The thermodynamic terms have their usual meanings as described in the class	100	
SECTION A (60 M)			
S. No.		Marks	CO
Q 1	How would you calculate the constant pressure y-x data of a binary mixture using an average value of the relative volatility?	6	CO1
Q2	What can be the industrial applications of T-xy and P-xy VLE data?	6	CO1
Q3	What are the critical solution temperatures regarding partially miscible liquid systems?	6	CO4
Q4	What are the available degrees of freedom in the following non-reactive equilibrium systems? (a) Two partially immiscible liquid phases in equilibrium with their vapors (b) A mixture of benzene and toluene undergoing a simple distillation operation.	6	CO1
Q5	Enlist any two applications of both the solid-liquid equilibria and liquid-liquid equilibria?	6	CO4
Q6	How will you obtain the value of the equilibrium constant of a chemical reaction from the value of standard Gibb's free energy? Discuss the feasibility of a chemical reaction using the value of standard Gibb's free energy.	6	CO 3

SECTION B (50 M)			
Q7	A group of students from the Department of Chemical Engineering, UPES Dehradun, were asked to carry out the experiments on a binary system of ethanol and water (for example) to obtain the data on activity coefficients. The students performed several experiments and generated a set of data at constant temperature and pressure and obtained the values of the activity coefficients of ethanol (1) and water (2) as $\gamma_{1}=\exp \left[x_{2}^{2}\left(2 x_{1}+0.5\right)\right]$ and $\gamma_{2}=\exp \left[x_{1}^{2}\left(-2 x_{2}+1.5\right)\right]$. Being a chemical engineer can you examine the correctness of their estimation?	10	CO2
Q8	The following reaction proceeds in a gas phase system, $\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}_{2}+\mathrm{H}_{2}$. The reaction proceeds at 100 kPa and $827^{\circ} \mathrm{C}$. The standard Gibbs free energy of the reaction is $-9,143.2 \mathrm{~J} / \mathrm{mol}$. If 1 mol of CO and 2 mol of $\mathrm{H}_{2} \mathrm{O}$ is supplied continuously into the system. Find the equilibrium composition of all the components.	10	CO
Q9	Show that the following equations provide the criteria of equilibrium under certain constraints (a) $(d U)_{S, V}=0$ (b) $(d A)_{T, V}=0$ (c) $(d G)_{T, P}=0$. Terms have their usual meanings.	10	$\mathrm{CO4}$
Q10	A hypothetical gas (1) follows an equation of state, $\mathrm{P}(\mathrm{V}-b)=\mathrm{RT}$. For this gas $b=0.1391$ $1 / \mathrm{mol}$. This gas undergoes condensation in a vessel and is assumed to be in equilibrium with the condensed liquid at 400 K and 1000 atm. Calculate the residual Gibbs free energy of the vapor phase at 400 K and 1000 atm . The thermodynamic terms have their usual meanings.	10	$\mathrm{CO3}$

Q11	The synthesis of ammonia takes place in a gas phase system according to the reaction $0.5 \mathrm{~N}_{2}+1.5 \mathrm{H}_{2} \rightleftharpoons \mathrm{NH}_{3}$ A mixture consisting of $0.5 \mathrm{~mol}_{2}$, and $1.5 \mathrm{~mol} \mathrm{H}_{2}$ is continuously fed to the reactor. The equilibrium mixture behaves as an ideal gas. Obtain an expression for the extent of reaction in terms of the equilibrium constant, K and total pressure, P .	10	CO4
	SECTION C (20 M)		
Q12	For the system acetone (1)/methyl acetate (2), the following correlations provide a reasonable correlation for the activity coefficients: $\ln \gamma_{1}=1.7 A x_{2}^{2} \quad$ and $\ln \gamma_{2}=1.7 A x_{1}^{2} \quad$ Where $\mathrm{A}=2.771+0.00523 \mathrm{~T}$ In addition, the following Antoine equations provide vapor pressures: $\begin{aligned} & \ln P_{1}^{s a t}=16.59158-\frac{3643.31}{T-33.424} \\ & \ln P_{2}^{s a t}=14.25326-\frac{2665.54}{T-53.424} \end{aligned}$ Where T is in K and vapor pressures are in kPa . Assuming the validity of modified Raoult's law (a) calculate T and y_{i} for $\mathrm{P}=101.33 \mathrm{kPa}$ and $\mathrm{x}_{1}=0.75$ (perform two iterations) (b) calculate T and x_{i} for $\mathrm{P}=101.33 \mathrm{kPa}$ and $\mathrm{y}_{1}=0.55$ (perform two iterations)	20	$\mathrm{CO1}$

