Name:

Enrolment No:

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2021

Programme Nam	e:	B.Tech (CE+RP)	Semester	: IV
Course Name	:	Heat Transfer	Time	: 3 h
Course Code	:	CHCE2009	Max. Marks	s: 100
Nos. of page(s)	:	03		

Instructions: In case of data missing make necessary assumptions				
S.No	SECTION A (6X10=60) (Attempt all questions)	Ma rks	CO	
Q 1	Derive an expression for three dimensional steady state heat conduction in a cylindrical coordinate system	10	CO1	
Q 2	A counter-flow double-pipe heat exchanger is to heat water from 20 °C to 40 °C at a rate of 1.2 kg/s. The heating is to be accomplished by geothermal water available at 160 °C at a mass flow rate of 2kg/s. The inner tube is thin-walled and has a diameter of 1.5cm. If the overall heat transfer coefficient of the heat exchanger is 640 W/m ² .°C, determine the length of the heat exchanger required to achieve the desired heating.	10	CO3	
Q3	Obtain an expression for the effectiveness of a counter flow heat exchanger in terms of NTU and the capacity ratio C.	10	CO2	
	i) With the help of typical experimental boiling curve explain the different regimes of pool boiling. (ii) Water is boiled at atmospheric pressure on a polished copper surface, which is electrically heated. Estimate the heat flux from the surface to water, if the surface is maintained at 110 °C. The properties of water at 100°C are: h _{fg} = 2257 kJ/kg, $\rho_l = 957.9$ kg/m ³ , $\rho_v = 0.5977$ kg/m ³ , $C_{pl} = 4.211$ kJ/kg-K, $\mu_l = 282 \times 10^{-3}$ kg/m.s, $Pr_l=1.75$. The value of vapour liquid surface tension $\sigma = 58.9 \times 10^{-3}$ N/m and $C_{sf} = 0.013$ and n=1. For Nucleate boiling: $q_{nucleate} = \mu_l h_{fg} \left[\frac{g(\rho_l - \rho_v)}{\sigma} \right]^{1/2} \left[\frac{C_p(T_s - T_{sat})}{C_{sf} h_{fg} P_{rl}^n} \right]^3$	6+4	CO2	

Q5	A steam consisting of 2500 kg/h of saturated n-propyl alcohol (1-propanol) vapor at 100		
	^o C and approximately atmospheric pressure will be condensed using a 90cm tube bundle		
	consisting 1200 tubes arranged for a single pass. The tubes are 0.75 inch OD, 14 BWG,		
	with a length of 12 feet and 1.25 square pitch. Physical properties of the condensate at		
	condensate film temperature are as follows:		
	$k_1=0.164$ W/m. °C, $\rho_L=784.9$ kg/m ³ , $\mu_L=0.5$ mNs/m ² , $\rho_v=17$ kg/m ³	10	CO2
	Estimate the condensing side heat-transfer coefficient if the tube bundle is horizontal and	10	002
	condensation occurs outside the tubes.		
	$(h_c)_b = 0.95k_L \left[\frac{\rho_L(\rho_L - \rho_v)g}{\mu_L\Gamma_h}\right]^{1/3} N_r^{-1/6}$		
Q6	A single effect evaporator is to concentrate (<i>xxxx</i>) kg/hr of 20% solution of sodium		
	hydroxide to 50% solids, where (<i>xxxx</i>) are the <i>last four digits</i> of your SAP ID . The gauge		
	pressure of the steam is 1.37 atm; the absolute pressure in the vapour space is 100 mmHg.		
	The overall coefficient is estimated to be 1400 W/m ² . $^{\circ}$ C. The feed temperature is 37.8 $^{\circ}$ C.		
	Calculate the amount of steam consumed, the economy and the heating surface required.		
	Data:		
	Enthalpy of 20% solution = 127.931 kJ/kg	10	CO2
	Enthalpy of 50% solution = 513.95 kJ/kg		
	B.P. of water at 100 mmHg = $51.1 ^{\circ}\text{C}$		
	B.P. of solution at 100 mmHg = $91.67 ^{\circ}\text{C}$		
	Enthalpy of water vapour at 91.67 0 C = 2672 kJ/kg		
	Heat of vaporization of steam (B.P. 126.11 0 C) at 1.37 atm(g) = 18466 kJ/kg		
	The condensation temperature of steam= 126.1 °C		
	SECTION B (2X20=40M)		
	Question <u>No. 7</u> compulsory. Answer <u>any one</u> in question <u>No. 8</u>		
Q7	10000 kg/h of furnace oil is heated from 30 °C to 90 °C in a shell and tube type heat		
	exchanger. The oil is flowing through the tube while steam at 150 °C is to flow through		
	the shell ($T_{hi}=T_{ho}=150$ °C). The tubes are 20mm ID and 25 mm OD in size. The heat		
	transfer coefficient on oil side and steam side are 200 and 60YZ W/m ² .K. If the length of		
	each tube is limited to 50 cm, use the effectiveness-NTU method to (a) calculate the	20	CO3
	number of tubes required in each pass, (b) the number of tube passes and (c) the tube		
	length if the velocity oil is limited to 20 cm/s. The properties of oil are the following:		
	density is 900 kg/m ³ , $C_P=1970$ J/kg K. Where YZ is the last two digits of your SAP ID.		
		1	I

Q8	In a counter flow double pipe heat exchanger, water is heated from 25 °C to 65 °C by oil		
	with a specific heat of 1.45kJ/kg-K and mass flow rate of 0.9kg/s. The oil is cooled from		
	230 °C to 160 °C. If overall heat transfer coefficient is 420W/m ² .K. Calculate the rate of		
	heat transfer, mass flow rate of water and surface area of heat exchanger.		
	OR		
	Steam in a condenser of a steam power plant is to be condensed at a temperature of $30 {}^{0}\text{C}$	20	CO2
	with cooling water entering at 14 ^o C and leaving at 22 ^o C. The surface area of tubes is 45		
	m^2 and the overall heat transfer coefficient is (<i>xxxx</i>) W/m ² -K, where (<i>xxxx</i>) are the <i>last</i>		
	<i>four digits</i> of your SAP ID . Determine the mass flow rate of the cooling water needed and		
	the rate of condensation of steam. Heat of condensation of steam, h_{fg} at 30 0 C is 2430.5		
	kJ/kg.		