Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2021

Course: Aerodynamics I Program: B.Tech ASE , ASE+AVE **Course Code: ASEG2002**

Semester: IV Time 03 hrs. Max. Marks: 100

S. No.		Marks	CO
Q 1	What are the difference between continuum flow and free molecule flow ?	5	CO1
Q 2	Define a) Ideal and real fluid b) Absolute pressure and Gauge pressure	5	COI
Q 3	Define path line, streak line and stream line. At what condition does these lines becomes identical ?	5	CO
Q4	State the application of potential theory for a flow past a stationary cylinder.	5	C03
Q5	Explain with a neat sketch the formation of starting vortex ?	5	C04
Q6	Explain the Phenomena of downwash and the induced drag.	5	C05
	SECTION B [10X5] 50 Marks		
Q7	Starting from basic principles, deduce the generalized momentum equation in three dimensional flow of any fluid, unsteady, Compressible or incompressible, viscous or inviscid flow.	10	CO2
Q8	Obtain flow pattern and expressions for stream line and velocity potential for a Rankine oval by superimposing Source, Sink and uniform flow?	10	C03
Q9	The velocity vector in a two-dimensional steady flow is given by $V = 2x^3\mathbf{i} - 6x^2y\mathbf{j}$. State whether the flow is irrotational. If irrotational find the velocity potential. If rotational, find the vorticity. Also find the circulation about the circle.	10	CO 3
Q10	Derive the expression for the velocity induced by infinite vortex filament using the Biot-savart law: Infinite and semi-infinite vortex filament expressions for incompressible flow.	10	C05
Q11	Derive an expression for lift coefficient and induced drag coefficient in terms of circulation strength $\Gamma(y)$ for a finite wing .	10	C05