Name:				
Enroln	nent No:	UPES		
	UNIVERSITY OF PETROLE			
Progra	End Semester Exar am Name : B. Tech (Applied Petroleum Engine		: I V	
-				
	e Name : Drilling Engineering and Well Const			
Course	e Code : PEAU 2008	Max. Mar	·ks: 100	
	f page(s) : Six only			
Instru	ctions: Answer should be precise & to the point.			
	SECTI	UN - A		
S. No.			Marks	CO
Q 1	You are the company man on a well being drilled	d. Well takes a kick. What will be		CO5
	your course of action?		5	
Q2	Well data			
	Depth (TVD) : 89XX feet (Replace XX with Mud weight : 11.9 ppg	last two digits of your SAP ID)		
	Pressure losses at 100 spm			
	Surface lines : 75 psi			
	Drill string : 725 psi		5	CO3
	Bit : 850 psi			
	Annulus : 100 psi			
	Calculate; a. Static BHP psi			
	b. BHCP psi			
Q3	Optimizing weight on bit (WOB) is an essential	part of drilling to ensure that the well	5	CO2
	deepens as drilling moves forward. Justify.		3	CO2
Q4	What is the normal range of pH of a drilling mud in drilling muds?	? Why a very high pH is undesirable	5	CO2
Q5	You being a cementing engineer, what measure	res you will take for a successful		
	cementing job.	,	5	CO3
Q6		drill collars.		CO5
	2. TheBOP can be used for size, but for lower pressure rating.	closing the well around any pipe		CO5
	3. If the 1000 ft well has to be drilling, the r	equirement for drum should	F	
	beHP.	-	5	CO5
	4. The normal industry practice is to keep th	ne overbalance pressure at		COF
	aroundPsi. 5. When the LOT should be performed duri	ng drilling-		CO5
	c. Then the Lor bhould be performed duri			1

			C05
	SECTION B (Scan and Upload)		
Q 7	 A 8 1/2" diameter hole is drilled up to 7,5XX ft with a density of 12.5 ppg. If the formation pore pressure at this point is 4500 psi. Calculate i) mud pressure overbalance above the pore pressure, ii) if the mud density is 10.5 ppg, what would be the overbalance, and iii) if the fluid level in the annulus is dropped to 250 ft due to inadequate hole fill up during tripping, what would be the effect on bottom-hole pressure? Note: Replace XX with last two digits of your SAP id. 	3+3+4=10	CO2
Q 8	Describe the applications of Directional Drilling Techniques. Highlight the constraints on the trajectory of a deviated well.	5+5=10	CO4
Q 9	What is the objective of well completion? Discuss advantages and disadvantages of both Open Hole and Cased Hole completion.	4+6=10	CO5
	i) Quantity of cement of class G and H, and ii) Volume of mix Water. Replace XX with last two digits of your SAP ID.	10	C05

	Mixwater required for Class G : 5 gallon/sack Slurry yield of Class G : 1.15 ft ³ /sack Mixwater required for Class H : 5.49 gallon/sack Slurry yield of Class H : 1.22 ft ³ /sack			
Q11	A triplex pump is pumping a 14.5 ppg mud into the circulating pressure of 17XX psi and a pump rate of based on this data:			
	1) If the pump rate is changed to 35 spm, calc (Considering the mud weight remains constant).	ulate the new pump pressure	5+5=10	CO3
	2) Calculate the new pump pressure if mud weight i <i>pump rate remains constant</i>).	is changed to 13.2 ppg (assume		
	Note : Replace XX with last two digits of your SA	P ID.		
	SECTION-C (Scan and Uploa	d all the calculations)		
Q12	Original mud weight	= 9.6 ppg		
	Measured depth	= 10,0XX ft		
	Kill rate pressure @ 50 spm	= 1000 psi		
	Drill string:	0.01776111/0		
	drill pipe 5.0 in. — 19.5 lb/ft capacity	= 0.01776 bbl/ft		
	HWDP 5.0 in. 49.3 lb/ft	= 0.00883 bbl/ft		
	capacity length	= 0.00885 bb/11 = 250 ft		
	drill collars 8.0 in. OD — 3.0 in. ID	- 230 It		
	capacity	= 0.0087 bbl/ft		
	length	= 350 ft		
	Annulus:			
	hole size	= 12 1/4 in.		CO5
	drill collar/open hole capacity	= 0.0836 bbl/ft	2x10=20	000
	drill pipe/open hole capacity	= 0.1215 bbl/ft		
	drill pipe/casing capacity	= 0.1303 bbl/ft		
	Mud pump (7 in. x 12 in. triplex @ 95% eff.)	= 0.136 bbl/stk		
	Leak-off test with 9,0 ppg mud	= 1130 psi		
	Casing setting depth	= 4000 ft		
	Shut-in drill pipe pressure	= 450 psi		
	Shut-in casing pressure Pit volume gain	= 550 psi = 40 bbl		
	True vertical depth	= 40001 = 10,000 ft		
		- 10,000 10		
	Note · Replace XX with last two digits of your SAI	ס ז ס		
	Note : Replace XX with last two digits of your SAI			
	Use the above data to answer the following questions			

 (A) SURFACE TO BIT STROKES (B) BIT TO SHOE STROKES (C) BIT TO SURFACE VOLUME (D) KILL MUD WEIGHT (E) INITIAL CIRCULATING PRESSURE (F) FINAL CIRCULATING PRESSURE (G) MAASP WITH CURRENT MUD WEIGHT (H) MAASP AFTER CIRCULATING KILL MUD (I) TIME FOR COMPLETE ONE CIRCULATION (J) PRESSURE DROP PER 100 STROKES 				
(C) BIT TO SURFACE VOLUME	(A)	SURFACE TO BIT STROKES		
(D) KILL MUD WEIGHT(E) INITIAL CIRCULATING PRESSURE(F) FINAL CIRCULATING PRESSURE(G) MAASP WITH CURRENT MUD WEIGHT(H) MAASP AFTER CIRCULATING KILL MUD(I) TIME FOR COMPLETE ONE CIRCULATION	(B)	BIT TO SHOE STROKES		
 (E) INITIAL CIRCULATING PRESSURE (F) FINAL CIRCULATING PRESSURE (G) MAASP WITH CURRENT MUD WEIGHT (H) MAASP AFTER CIRCULATING KILL MUD (I) TIME FOR COMPLETE ONE CIRCULATION 	(C)	BIT TO SURFACE VOLUME		
 (F) FINAL CIRCULATING PRESSURE (G) MAASP WITH CURRENT MUD WEIGHT. (H) MAASP AFTER CIRCULATING KILL MUD (I) TIME FOR COMPLETE ONE CIRCULATION 	(D)	KILL MUD WEIGHT		
(G) MAASP WITH CURRENT MUD WEIGHT(H) MAASP AFTER CIRCULATING KILL MUD(I) TIME FOR COMPLETE ONE CIRCULATION	(E)	INITIAL CIRCULATING PRESSURE		
 (H) MAASP AFTER CIRCULATING KILL MUD (I) TIME FOR COMPLETE ONE CIRCULATION 	(F)	FINAL CIRCULATING PRESSURE		
(I) TIME FOR COMPLETE ONE CIRCULATION	(G)	MAASP WITH CURRENT MUD WEIGHT		
	(H)	MAASP AFTER CIRCULATING KILL MUD		
(J) PRESSURE DROP PER 100 STROKES	(1)	TIME FOR COMPLETE ONE CIRCULATION		
	(J)	PRESSURE DROP PER 100 STROKES		

Surface BOP (Vertical Well) Kill She					ət		AF	Pl Fiel	d Unit
Formatio	n Strength	Data	:		Curren	t Well	Data :		
Surface Le	ak-off Press	ure	(A)	psi	† .				
Mud Weigl	ht		(B)	ppg	Mud d	ata:			
Maximum A	Allowable Mu		ht		Mud Weight			20	
(B) + Sh	oe True Verti		th x 0.0	052	weight		PI	og	
			c) [ppg	Casing	g Shoe	Data:		
Initial M/	AASP nt Mud Weigh	t}xSh	oe TVD	x 0.052	Size		ir	1.	
=		,			M.D.		ft		
				psi	T.V.D.		ft		
Pump No.1 Displaceme	nt		cement		Hole 1	Data:			
Slow	bbls /stroke			bbls / stroke PL)	Size		i	n.	
Pump Rate Data	Pump No. 1			Imp No. 2	M.D.			t.	
Spm					T.V.D.		fi	 :.	
Spm						L			
Pre-Volume	e Data:		igth 't.	Capacity Bbls/ft.	Volu Bb		Pump S	trokes	Time minutes
Drill Pipe			x	=			Volu	me	Pump
Heavy Wall	Drill Pipe		x	=			Pum		Strokes
Drill Collars			x	=			Displace	ment	Slow Pump Rate
Drill Strin	g Volume			(1	 D)	bbl	(E)	stks	min
					-				
DC x Open	Hole		x	=					
DP/HWDP x	Open Hole		x	=			-		
Open Hol	e Volume			(F))	bbl		stks	min
DP x Cas	ing		x	=	(G)	bbl		stks	min
Total Anr	nulus Volu	me		(F +G) =	(H)	bbl		stks	min
Total Wel	l System V	olume)	(D+H) = ((1)	bbl		stks	min

Kick Data SIDPP] psi	SICP psi	Pit Gain	bbls
Kill Mud Weight	Current	SIDPP Mud Weight + TVD X 0.052		
KMW			=	ppg

Initial Circulating Pressure	Dynamic Pressure Loss + SIDPP		
ICP		=	psi
Final Circulating	Kill Mud Weight		

Final Circulating Pressure	Current Mud Weight		
FCP		=	psi

(K) = ICP – F	•		psi (K) x 100 (E)			psi / 100 stro		
Strokes	Pressure	Static & Drill Pipe	Dynamic Pr.(psi)					
		↑						
		P						
		r e						
		s						
•		s u						
		r						
		Stro						