Name	:	UPES	
Enroli	ment No:	UNIVERSITY WITH A PURPOSE	
	UNIVERSITY OF PETRO	LEUM AND ENERGY STUDIES	
	End Semester Examina	ation (Online Mode), Dec 2020	
	se: Physical Chemistry IV	Semester: IV	
Progr	am: B. Sc. (H) Chemistry	Time: 3 hrs	
Cours	se Code: CHEM2006	Max. Marks: 100	
	SECTION	$ON - A$ $6 \times 5 = 30$ Marks	
	ch Question will carry 5 Marks		
2. Ins	truction: Complete the statement / S	Select the correct and type answer(s)	
Q 1		reaction is $3.33 \times 10^{-2} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$. If the	CO1
	initial concentration of the reactant is	s 0.05 mol dm ⁻³ . Calculate the half-life?	
	(a) 33.3 min	(b) 10 min	
	(c) 60 min	(d) 5 min	
Q 2	Molar ionic conductance at infinite of	dilution of Na ⁺ and Cl ⁻ ions are 50.11 x 10 ⁻	CO1
,		tively. Calculate the transport number of	
	Na ⁺ and Cl ⁻ ions.		
Q 3		0 K and 700 K are 0.02 S ⁻¹ and 0.07 S ⁻¹ ,	CO1
QJ		E_a of the reaction (R= 8.314JK ⁻¹ mol ⁻¹)	COI
	(a) 8.3124 KJ	(b) 18.263 KJ	
0.1	(c) 36.55 KJ	(d) 9.1315 KJ	G0.1
Q 4		er at 10 ⁻³ M concentration absorbs 10 per	CO1
	1	boath of 1 cm length. What should be the	
	radiation?	rder to absorb 90 per cent of the same	
	(a) 0.218 mol dm ⁻³	(b) 0.0218 mol dm ⁻³	
	(c) 0.9 mol dm ⁻³	(d) 0.09 mol dm ⁻³	
Q 5		henanthroline complex of iron (II) is 12,00	CO2
,		etectable absorbance is 0.01. Calculate the	
		lex that can be detected in a Lambert-Beer	
	law cell of path length 1.00 cm.		
	(a) 8.33 x 10-6 M	(b) $83.3 \times 10^{-6} M$	
	(c) 1.2 x 10 ⁻⁶ M	(d) 12.00 x 10 ⁻⁶ M	
Q 6		uctance of H_2O is $1.0 \times 10^{-6} \text{ S m}^2 \text{ mol}^{-1}$	CO3
	and the molar conductance at infinite	e dilution is 550 S m ² mol ⁻¹ . The degree of	
	dissociation of water is;		
	(a) 1.72 x 10-9	(b) 1.82 x 10-9	
	(c) 1.92 x 10-9	(d) 1.0 x 10-9	
	CECTIO		<u> </u>

 $10 \times 5 = 50 \text{ Marks}$

- SECTION B

 1. Each question will carry 10 marks

 2. Instruction: Write short / brief notes/upload file

Q 1	What is meant by transport number of an ion? How is it determined using	CO1
	Hittorf's method and Moving Boundary method?	
Q 2	A solution of silver nitrate containing 12.14 g of silver in 50 ml of solution was	CO3
	electrolyzed between platinum electrodes. After electrolysis, 50 ml of the anode	
	solution was found to contain 11.55 g of silver, while 1.25 g of metallic silver	
	was deposited on the cathode. Calculate the transport number of Ag ⁺ and NO ₃ ⁻	
	ions.	
Q 3	Write a brief note on Norrish Type-I and Norrish Type-II reactions.	CO2
Q4	The rate constant of a second-order reaction is 5.70 x 10 ⁻⁵ dm ³ mol ⁻¹ s ⁻¹ at 25 °C	CO2
	and 1.64 x 10 ⁻⁴ dm ³ mol ⁻¹ s ⁻¹ at 40 °C. Calculate the activation energy and the	
	Arrhenius pre-exponential factor.	
Q 5	Write short notes on the following:	CO2
	(i) Promoters and inhibitors	
	(ii) Effect of nU on angume actolysis	
	(ii) Effect of pH on enzyme catalysis	
	Section – C $1 \times 20 = 20 \text{ Marks}$	
1. Eac		
	Section – C $1 \times 20 = 20 \text{ Marks}$	
	Section – C $1 \times 20 = 20$ Marks ch Question carries 20 Marks.	CO3
2. Ins	$Section - C \qquad 1 \times 20 = 20 \text{ Marks}$ ch Question carries 20 Marks. truction: Write long answers /upload file.	CO3
2. Ins	Section – C 1 x 20 = 20 Marks ch Question carries 20 Marks. truction: Write long answers /upload file. What is the principle underlying conductometric titrations? Discuss the	CO3
2. Ins	Section – C 1 x 20 = 20 Marks ch Question carries 20 Marks. truction: Write long answers /upload file. What is the principle underlying conductometric titrations? Discuss the titration curves obtained in the titration of;	CO3
2. Ins	Section – C 1 x 20 = 20 Marks ch Question carries 20 Marks. truction: Write long answers /upload file. What is the principle underlying conductometric titrations? Discuss the titration curves obtained in the titration of; (i) A strong acid with a weak base	
2. Ins	Section – C 1 x 20 = 20 Marks ch Question carries 20 Marks. truction: Write long answers /upload file. What is the principle underlying conductometric titrations? Discuss the titration curves obtained in the titration of; (i) A strong acid with a weak base (ii) A mixture of HCl and CH ₃ COOH with sodium hydroxide.	
2. Ins	Section – C 1 x 20 = 20 Marks ch Question carries 20 Marks. truction: Write long answers /upload file. What is the principle underlying conductometric titrations? Discuss the titration curves obtained in the titration of; (i) A strong acid with a weak base (ii) A mixture of HCl and CH ₃ COOH with sodium hydroxide. (iii) A strong acid with a strong base	CO3
2. Ins	Section – C 1 x 20 = 20 Marks ch Question carries 20 Marks. truction: Write long answers /upload file. What is the principle underlying conductometric titrations? Discuss the titration curves obtained in the titration of; (i) A strong acid with a weak base (ii) A mixture of HCl and CH ₃ COOH with sodium hydroxide. (iii) A strong acid with a strong base (iv) Silver nitrate against potassium chloride	CO3
2. Ins	Section – C 1 x 20 = 20 Marks ch Question carries 20 Marks. truction: Write long answers /upload file. What is the principle underlying conductometric titrations? Discuss the titration curves obtained in the titration of; (i) A strong acid with a weak base (ii) A mixture of HCl and CH ₃ COOH with sodium hydroxide. (iii) A strong acid with a strong base (iv) Silver nitrate against potassium chloride	CO3
2. Ins	Section – C 1 x 20 = 20 Marks truction: Write long answers /upload file. What is the principle underlying conductometric titrations? Discuss the titration curves obtained in the titration of; (i) A strong acid with a weak base (ii) A mixture of HCl and CH ₃ COOH with sodium hydroxide. (iii) A strong acid with a strong base (iv) Silver nitrate against potassium chloride	CO3