Name: Enrolment No:		
Progr Cours Cours Nos. 0	\left.UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2021 $\right)$	V 3 hrs 100
SECTION A(Attempt all questions; Each question carries 5 marks)		
S. No.		CO
Q1.	After first iteration by using iterative process $x_{n+1}=\frac{1}{2}\left\{x_{n}+\frac{N}{x_{n}}\right\}$ the positive square root of 278 , with initial solution $x_{0}=16$ is given by A. 16.6800 B. 16.6875 C. 15.6787 D. 17.0989	CO1
Q2.	Consider the data $y(15)=24, y(18)=37, y(22)=25$. If using Newton's divided difference formula the second degree polynomial for the above data is given by $p_{2}(x)=a_{0}+a_{1}(x-15)+a_{2}(x-15)(x-18)$, then value of a_{2} is most nearly A. 24 B. 4.3333 C. -1.0476 D. -3	CO2
Q3.	Using three points Simpson's $\frac{1}{3}$ rule an approximate value of the integral $\int_{1}^{2} \frac{\sin \pi x}{\ln x} d x$ is A. 0 B. -2.1678 C. -1.6442 D. -9.8652	CO3
Q4.	On the coordinate axes $x=0$ and $y=0$, the partial differential equation $x^{2} u_{x x}-$ $2 x y u_{x y}-3 y^{2} u_{y y}+u_{y}=0$ is A. Elliptic B. Parabolic C. Hyperbolic D. not classified.	CO4
Q5.	The steepest descent direction to minimize the function $f\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1} x_{3}^{2}+x_{1} x_{2} x_{3}$ at the starting point $(1,-1,-1)$ is A. $\left(\begin{array}{c}-3 \\ 1 \\ 5\end{array}\right)$ B. $\left(\begin{array}{c}3 \\ -1 \\ 5\end{array}\right)$ C. $\left(\begin{array}{c}3 \\ 1 \\ -5\end{array}\right)$ D. $\left(\begin{array}{l}3 \\ 1 \\ 5\end{array}\right)$	$\mathrm{CO5}$
Q6.	For what values of b the matrix $\left[\begin{array}{ccc}2 & -1 & b \\ -1 & 2 & -1 \\ b & -1 & 2\end{array}\right]$ is positive semidefinite? A. $b \leq-1$ B. $b \geq 2$ C. $-1 \leq b \leq 2$ D. $b \in \mathbb{R}$	CO6

SECTION B

(Q7-Q10 are compulsory and Q11 has internal choice; Each question carries $\mathbf{1 0}$ marks)

Q7.	Apply Steepest descent method to minimize the function $f\left(x_{1}, x_{2}\right)=4 x_{1}^{2}-4 x_{1} x_{2}+2 x_{2}^{2}$ with initial point $x_{0}=(2,3)$. Perform iterations until $\|\nabla f\|<\binom{1}{1}$.						CO5
Q8.	Using Lagrange multiplier method solve the following constrained optimization problem.$\begin{aligned} & \min _{x_{1}, x_{2} \geq 0} x_{1}^{2}-x_{1} x_{2}+x_{2}^{2} \\ & \text { subject to } x_{1}^{2}+x_{2}^{2}=1 . \end{aligned}$						CO6
Q9.	Use Fibonacci search method to minimize the function $f(x)=-\frac{1}{(x-1)^{2}}\left(\ln x-2 \frac{x-1}{x+1}\right)$ in the range $[1.5,4.5]$. Reduce the size of the interval minimum $\frac{1}{5}$ of the original.						CO5
Q10.	Evaluate the integral $\int_{0}^{\frac{\pi}{2}} \sqrt{\sin x} d x$ by Simpson's $\frac{3}{8}$ rule with step length $h=\frac{\pi}{12}$.						CO3
Q11.	Estimate the number of students who secured marks between 50 and 55 from the following table.						
	Marks (x)	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	
	Marks (x)	$\frac{30-40}{31}$			$\frac{60-70}{35}$	70-80	
	(y)						
	Fit a polynomial interpolation form	degree th a, and find	which 3.5).	s the	wing value	by Newton forward	CO2
	x	3	4	5	6		
	y	6	24	60	120		
SECTION C(Q12a. and Q12b. both have internal choices; Each question carries 10 marks)							

Q12.
a. Use fourth order Runge-Kutta method to solve for $y(0.4)$ taking $h=0.2$, for the following initial value problem.

$$
\frac{d y}{d x}=1+y^{2}, \text { with the initial condition } y(0)=\lim _{x \rightarrow \infty} \frac{x^{2}}{2^{x}} .
$$

OR

Using finite difference method determine $y(1.25), y(1.50)$ and $y(1.75)$ for the following boundary value problem

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0 \text { with } y(1)=\lim _{x \rightarrow 1} \frac{\sin (x-1)}{x-1}, y(2)=0.5
$$

b. Solve the Laplace equation $u_{x x}+u_{y y}=0$ with $h=\frac{1}{3}$ over the boundary of a square of unit length with $u(x, y)=16 x^{2} y^{2}$ on the boundary by Liebmann's iteration process. Perform three iterations of Gauss Siedel method.

OR

Solve $\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}$ with the conditions $u(0, t)=0, u(4, t)=0, u(x, 0)=x(4-x)$ taking $h=1$ and employing Bender-Schmidt method. Continue the solution through five time steps.

