Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

Online End Semester Examination, May 2021

Programme : B.TECH APE GAS

Course Name : Drilling Technology

Course Code : PEAU 2009

Semester : IV

Time : 03 hrs.

Max. Marks: 100

Nos of Page(s) : 06

Instructions: All questions are Compulsory

SECTION A

1. Each Question will carry 5 Marks

2. Instruction: Complete the statement / Select the correct answer(s)

S. No.		Marks	CO
Q 1	I. Detection of Kick becomes difficult on use of	5M	CO1

Q 2	 I. What is casing used for? a. To isolate downhole zones so they can be produced separately b. To allow near surface water zones to enter the wellbore 		
	c. To line the trench dug to lay pipeline d. To control pressure in catalytic crackers II. The depth below the surface used to calculate bottom hole pressures is a. Outer diameter b. Total depth c. True vertical depth d. Measured depth III. Conductor a. Final casing, bottom part cemented to cover zones of interest b. Very short string used in unconsolidated soil conditions like sand or mud c. Short casing string run from bottom of previous casing string d. None of these IV. Short casing string run from bottom of previous casing string a. Conductor b. Liner c. Production d. Surface V. Which is used to keep cement separated from mud? a. Casing shoe b. Centralizers c. Coring d. Wiper plugs	5M	CO2
Q 3	1. What is meant by Primary Well Control (a) The use of pit volume and flow rate measuring devices to recognize a kick (b) The slow circulating rate pressure used in the kill process (c) The use of mud hydrostatic to balance fluid pressures in the formation (d) The use of Blow out preventers to close in a flowing well 2. Will a kick occur in the event of a loss of return? (a) No, it depends on the drill string weight reduction noted on the weight indicator (b) No, it depends on the mud level in the annulus and the formation pressure (c) Yes, losses will always occur above any potential kick zone. (d) None of the above. 3. Which of the following factors will not increase the circulating pressure? (a) Increase in the drilled depth (b) Increase in the length of BHA (c) Decrease in the mud density during drilling	5M	CO3

	(d) None of the above 4. Which of following practices are likely to increase the chances of swabbing? (a) Pulling pipe slowly (b) Pulling pipe fast (c) Pulling through tight spots with pump on (d) Pulling pipe very slowly 5. After recognizing a drilling break, what is the first action to be taken? (a) Circulate bottoms up (b) Continue drilling (c) Reduce pump speed (d) Make a flow check		
Q 4	I. If the Kelly is not made up on the drill string and flow comes up the drill string, what can be used to stop the flow? (a) Lower Kelly cock (b) Pipe ram (c) Full opening safety valve (d) Annular preventer II. Drilling muds should have a pH of at least (a) 3 (b) 7 (c) 9 (d) 12 III. Where would a small quantity of high viscosity mud, also called a pill, be mixed? (a) Settling tank (b) Reserve tank (c) Slug tank (d) Chemical tank IV. What is the purpose of hydro cyclone equipment? (a) To remove gas from the mud (b) To remove particles from the mud (c) To pump mud (d) To mix mud with additives V. Casing grade N-80, in this grade 80 represents: (a) Minimum tensile strength (b) Maximum tensile strength (c) Maximum tensile strength	5M	CO4
Q 5	 (d) Maximum yield strength I. What is the function of shear blind ram? (a) To shear the drill pipe and seal the well bore simultaneously (b) To shear around the hexagonal and square Kelly (c) To only shear any kind of tubular in the well (d) To hold the drill pipe II. Will a kick occur in the event of a loss of return? (a) No, it depends on the drill string weight reduction noted on the weight indicator 	5M	CO4

always occur above any potential kick zone			
n the mud level in the annulus and the formation pressure			
_			
<u> </u>			
•			
•			
<u> -</u>			
OH operation			
nud weight was increased from 10 ppg to 11.2 ppg expecting			
n pressure below. How this increase of mud weight will			
casing shoe is at 4697 ft. TVD)?			
(a) Decrease by 293 psi			
and haid is stored to operate Bor varior			
tor			
ages in mud level while tripping can be monitored as			
iges in midd lever write urpping can be monitored as	CO3		
1			
•			
d			
ation does the weight of indicator shows?			
ipe			
	psi O		

Por a given depth, well orientation and rock type, it is usually possible to select a mud weight which is appropriate from a rock mechanics point of view i.e wellbore failure in your answer? 10M C		(c) Hook load			
1. Each question will carry 10 marks 2. Instruction: Write short / brief notes Q 7 Define the term "BIT DESIGN" and explain in detail about roller cone bit design. Q 8 For a given depth, well orientation and rock type, it is usually possible to select a mud weight which is appropriate from a rock mechanics point of view ic wellbore failure is prevented. Explain why this is possible, addressing all types of wellbore failure in your answer? Q 9 a) Explain how Removal of Drilling fluid is done before drilling cementing and why it is important? (5 Marks) b) Mention and write short notes on Properties of cementing additives (5 Marks) b) Mention and write short notes on Properties of cementing additives (5 Marks) b) Mention and write short notes on Properties of the main factors, which influence the pressure loss when circulating fluid through the drill string and annulus when drilling? 1. Each Question carries 20 Marks. 2. Instruction: Write long answer. Q 12 Use the following data and fill out the kill sheet. DATA: 8 ½ Hole Depth = 13600 ft MID. = 5000 ft TVD. EOB = 5400 ft MID. = 4285 ft TVD. 9 5/8 inch casing set at = 9000 ft MID. = 4285 ft TVD. Drill Pipe 5", Capacity = 0.0178 bbb/ft. 5" HWDP = 180 ft. = capacity=0.0087 bbb/ft. 6 ¼ "Drill collar = 150 ft. = capacity=0.0087 bbb/ft. Mud in Use = 10.9 ppg. Volume Open Hole/Drill Dollar = 0.0323 bbb/ft. Volume Open Hole/Drill pipe/HWDP = 0.0459 ft. Volume Casing/Drill Pipe = 0.0515 bbb/ft. LOT DATA: Shoe Leaked at 1120 psi with 10.4 ppg MUD		(d) B & C			
2. Instruction: Write short / brief notes Q 7 Define the term "BIT DESIGN" and explain in detail about roller cone bit design. Q 8 For a given depth, well orientation and rock type, it is usually possible to select a mud weight which is appropriate from a rock mechanics point of view i.e wellbore failure is prevented. Explain why this is possible, addressing all types of wellbore failure is prevented. Explain why this is possible, addressing all types of wellbore failure in your answer? Q 9 a) Explain how Removal of Drilling fluid is done before drilling cementing and why it is important? (5 Marks) b) Mention and write short notes on Properties of cementing additives (5 Marks) b) Mention and write short notes on Properties of cementing additives (5 Marks) b) Mention and write short notes on Properties of cementing additives (5 Marks) b) Mention and write short notes on Properties of cementing additives (5 Marks) b) Mention and write short notes on Properties of cementing additives (5 Marks) Q 10 Discuss the killing procedure followed in "Driller's Method Q 11 Describe the main factors, which influence the pressure loss when circulating fluid through the drill string and annulus when drilling? SECTION-C 1. Each Question carries 20 Marks. 2. Instruction: Write long answer. Q 12 Use the following data and fill out the kill sheet. DATA: 8 ½ Hole Depth = 13600 ft MD. = 5000 ft MD. = 5000 ft MD. = 4285 ft TVD. 9 5/8 inch casing set at = 9000 ft MD. = 4480 ft TVD. Drill Pipe 5", Capacity = 0.018 bbl/ft. = 180 ft. = capacity=0.0087 bbl/ft. = 10.9 ppg. Volume Open Hole/Drill Collar = 0.0323 bbl/ft. Volume Open Hole/Drill pipe/HWDP = 0.0459 ft. LOT DATA: Shoe Leaked at 1120 psi with 10.4 ppg MUD			3		
Q 7 Define the term "BIT DESIGN" and explain in detail about roller cone bit design. 10M C					
Por a given depth, well orientation and rock type, it is usually possible to select a mude weight which is appropriate from a rock mechanics point of view ie wellbore failure is prevented. Explain why this is possible, addressing all types of wellbore failure in your answer? Q 9			about roller cone bit design.	407.5	004
weight which is appropriate from a rock mechanics point of view ie wellbore failure is prevented. Explain why this is possible, addressing all types of wellbore failure in your answer? Q 9 a) Explain how Removal of Drilling fluid is done before drilling cementing and why it is important? (5 Marks) b) Mention and write short notes on Properties of cementing additives (5 Marks) Q 10 Discuss the killing procedure followed in "Driller's Method Q 11 Describe the main factors, which influence the pressure loss when circulating fluid through the drill string and annulus when drilling? SECTION-C 1. Each Question carries 20 Marks. 2. Instruction: Write long answer. Q 12 Use the following data and fill out the kill sheet. DATA: 8 ½ Hole Depth SOUR SHOR SHOR SHOR SHOR SHOR SHOR SHOR SHO				10M	CO2
is prevented. Explain why this is possible, addressing all types of wellbore failure in your answer? Q 9 a) Explain how Removal of Drilling fluid is done before drilling cementing and why it is important? (5 Marks) b) Mention and write short notes on Properties of cementing additives (5 Marks) b) Mention and write short notes on Properties of cementing additives (5 Marks) Q 10 Discuss the killing procedure followed in "Driller's Method Q 11 Describe the main factors, which influence the pressure loss when circulating fluid through the drill string and annulus when drilling? SECTION-C 1. Each Question carries 20 Marks. 2. Instruction: Write long answer. Q 12 Use the following data and fill out the kill sheet. DATA: 8 ½ Hole Depth = 13600 ft MD. = 5000 ft TVD. EOB = 5400 ft MD. = 4285 ft TVD. 9 5/8 inch casing set at = 9000 ft MD. = 4285 ft TVD. Drill Pipe 5", Capacity = 0.0178 bbl/ft. 5" HWDP = 180 ft. = capacity= 0.0087 bbl/ft. = 150 ft. = capacity= 0.0081 bbl/ft. Mud in Use Volume Open Hole/Drill Collar Volume Open Hole/Drill Collar Volume Casing/Drill Pipe = 0.0323 bbl/ft. LOT DATA: Shoe Leaked at 1120 psi with 10.4 ppg MUD	Q 8				
g prevented. Explain why this is possible, addressing all types of wellbore failure in your answer? a) Explain how Removal of Drilling fluid is done before drilling cementing and why it is important? b) Mention and write short notes on Properties of cementing additives (5 Marks) Discuss the killing procedure followed in "Driller's Method 10M C 11D Describe the main factors, which influence the pressure loss when circulating fluid through the drill string and annulus when drilling? SECTION-C 1. Each Question carries 20 Marks. 2. Instruction: Write long answer. Q 12 Use the following data and fill out the kill sheet. DATA: 8 ½ Hole Depth = 13600 ft MD. EOB = 5400 ft MD. EOB = 5400 ft MD. 4285 ft TVD. 9 5/8 inch casing set at = 9000 ft MD. 9 5/8 inch casing set at = 9000 ft MD. 24285 ft TVD. Drill Pipe 5", Capacity = 0.0178 bbl/ft. 5" HWDP = 180 ft. capacity=0.0087 bbl/ft. 150 ft. Mud in Use = 10.9 ppg. Volume Open Hole/Drill Collar = 0.0323 bbl/ft. Volume Open Hole/Drill pipe/HWDP = 0.0459 ft. LOT DATA: Shoe Leaked at 1120 psi with 10.4 ppg MUD				10M CO3	
a) Explain how Removal of Drilling fluid is done before drilling cementing and why it is important? b) Mention and write short notes on Properties of cementing additives (5 Marks) low C Q 10 Discuss the killing procedure followed in "Driller's Method Q 11 Describe the main factors, which influence the pressure loss when circulating fluid through the drill string and annulus when drilling? SECTION-C 1. Each Question carries 20 Marks. 2. Instruction: Write long answer. Q 12 Use the following data and fill out the kill sheet. DATA: 8 ½ Hole Depth = 13600 ft MD. = 5000 ft TVD. EOB = 5400 ft MD. = 4285 ft TVD. 9 5/8 inch casing set at = 9000 ft MD. = 4600 ft TVD. Drill Pipe 5", Capacity = 0.0178 bbl/ft. 5" HWDP = 180 ft. capacity=0.0087 bbl/ft. 6 ¼ " Drill collar = 150 ft. = capacity=0.0061 bbl/ft. Mud in Use = 10.9 ppg. Volume Open Hole/Drill Collar = 0.0323 bbl/ft. Volume Open Hole/Drill Pipe = 0.0459 ft. LOT DATA: Shoe Leaked at 1120 psi with 10.4 ppg MUD			all types of wellbore failure in		
Important? (5 Marks) 10M C	<u>0 9</u>	+ -	are drilling comenting and why it is		
b) Mention and write short notes on Properties of cementing additives (5 Marks) Q 10 Discuss the killing procedure followed in "Driller's Method Q 11 Describe the main factors, which influence the pressure loss when circulating fluid through the drill string and annulus when drilling? 10M C	Q)			103/	004
Q 10 Discuss the killing procedure followed in "Driller's Method Q 11 Describe the main factors, which influence the pressure loss when circulating fluid through the drill string and annulus when drilling? SECTION-C 1. Each Question carries 20 Marks. 2. Instruction: Write long answer. Q 12 Use the following data and fill out the kill sheet. DATA: 8 ½ Hole Depth = 13600 ft MD. = 5000 ft TVD. KOP = 2000 ft. EOB = 5400 ft MD. = 4285 ft TVD. 9 5/8 inch casing set at = 9000 ft MD. Drill Pipe 5", Capacity = 0.0178 bbl/ft. 5" HWDP = 180 ft. capacity=0.0087 bbl/ft. 6 ¼ " Drill collar = 10.9 ppg. Volume Open Hole/Drill Collar = 0.0323 bbl/ft. Volume Open Hole/Drill pipe/HWDP = 0.0459 ft. Volume Casing/Drill Pipe = 0.0515 bbl/ft. LOT DATA: Shoe Leaked at 1120 psi with 10.4 ppg MUD		·	•	101/1	CO4
Q 11 Describe the main factors, which influence the pressure loss when circulating fluid through the drill string and annulus when drilling? SECTION-C 1. Each Question carries 20 Marks. 2. Instruction: Write long answer. Q 12 Use the following data and fill out the kill sheet. DATA: 8 ½ Hole Depth = 13600 ft MD. 5000 ft TVD. EOB = 5400 ft MD. 4285 ft TVD. 9 5/8 inch casing set at = 9000 ft MD. Drill Pipe 5", Capacity = 0.0178 bbl/ft. 5" HWDP = 180 ft. C capacity=0.0087 bbl/ft. 6 ¼ "Drill collar = 150 ft. Mud in Use = 10.9 ppg. Volume Open Hole/Drill Collar = 0.0323 bbl/ft. Volume Open Hole/Drill Pipe = 0.0515 bbl/ft. LOT DATA: Shoe Leaked at 1120 psi with 10.4 ppg MUD	0.10	·			
through the drill string and annulus when drilling? SECTION-C				10M	CO3
SECTION-C	Q 11		re loss when circulating fluid	10M	CO2
1. Each Question carries 20 Marks. 2. Instruction: Write long answer. Q 12 Use the following data and fill out the kill sheet. DATA: 8 ½ Hole Depth = 13600 ft MD. 5000 ft TVD. KOP = 2000 ft. EOB = 5400 ft MD. 4285 ft TVD. 9 5/8 inch casing set at = 9000 ft MD. Drill Pipe 5", Capacity = 0.0178 bbl/ft. 5" HWDP = 180 ft. capacity=0.0087 bbl/ft. 6 ¼ " Drill collar = 150 ft. = capacity=0.0061 bbl/ft. Mud in Use = 10.9 ppg. Volume Open Hole/Drill Collar = 0.0323 bbl/ft. Volume Open Hole/Drill pipe/HWDP = 0.0459 ft. Volume Casing/Drill Pipe = 0.0515 bbl/ft. LOT DATA: Shoe Leaked at 1120 psi with 10.4 ppg MUD					
Use the following data and fill out the kill sheet. DATA: 8 ½ Hole Depth = 13600 ft MD. = 5000 ft TVD. KOP EOB = 5400 ft MD. = 4285 ft TVD. 9 5/8 inch casing set at = 9000 ft MD. = 4285 ft TVD. Drill Pipe 5", Capacity 5" HWDP = 180 ft. = capacity=0.0087 bbl/ft. 5" HWDP = 150 ft. = capacity=0.0061 bbl/ft. Mud in Use Volume Open Hole/Drill Collar Volume Open Hole/Drill pipe/HWDP Volume Casing/Drill Pipe = 0.0515 bbl/ft. LOT DATA: Shoe Leaked at 1120 psi with 10.4 ppg MUD	1. Each (
DATA: 8 ½ Hole Depth = 13600 ft MD. = 5000 ft TVD. KOP = 2000 ft. EOB = 5400 ft MD. = 4285 ft TVD. 9 5/8 inch casing set at = 9000 ft MD. = 4600 ft TVD. Drill Pipe 5", Capacity = 0.0178 bbl/ft. 5" HWDP = 180 ft. = capacity=0.0087 bbl/ft. = capacity=0.0061 bbl/ft. Mud in Use = capacity=0.0061 bbl/ft. = capacity=0.0061 bbl/ft. = capacity=0.0061 bbl/ft. = 10.9 ppg. Volume Open Hole/Drill Collar = 0.0323 bbl/ft. Volume Open Hole/Drill pipe/HWDP = 0.0459 ft. Volume Casing/Drill Pipe = 0.0515 bbl/ft. LOT DATA: Shoe Leaked at 1120 psi with 10.4 ppg MUD					1
8 ½ Hole Depth	Q 12				
## South Company of the Company of t			- 12600 A MD		
KOP EOB = 2000 ft. = 5400 ft MD. = 4285 ft TVD. 9 5/8 inch casing set at = 9000 ft MD. = 4600 ft TVD. Drill Pipe 5", Capacity = 0.0178 bbl/ft. 5" HWDP = 180 ft. = capacity=0.0087 bbl/ft. 6 1/4 " Drill collar = capacity= 0.0061 bbl/ft. Mud in Use = capacity= 0.0061 bbl/ft. = 10.9 ppg. Volume Open Hole/Drill Collar Volume Open Hole/Drill pipe/HWDP = 0.0459 ft. Volume Casing/Drill Pipe = 0.0515 bbl/ft. LOT DATA: Shoe Leaked at 1120 psi with 10.4 ppg MUD		8 72 Hole Depui			
EOB		KOP			
= 4285 ft TVD. 9 5/8 inch casing set at = 9000 ft MD. = 4600 ft TVD. Drill Pipe 5", Capacity = 0.0178 bbl/ft. 5" HWDP = 180 ft. = capacity=0.0087 bbl/ft. 6 1/4 " Drill collar = capacity= 0.0061 bbl/ft. Mud in Use = 10.9 ppg. Volume Open Hole/Drill Collar Volume Open Hole/Drill pipe/HWDP Volume Casing/Drill Pipe = 0.0459 ft. LOT DATA: Shoe Leaked at 1120 psi with 10.4 ppg MUD					
= 4600 ft TVD. Drill Pipe 5", Capacity = 0.0178 bbl/ft. 5" HWDP = 180 ft. = capacity=0.0087 bbl/ft. 6 1/4 " Drill collar = 150 ft. = capacity= 0.0061 bbl/ft. Mud in Use = 10.9 ppg. Volume Open Hole/Drill Collar = 0.0323 bbl/ft. Volume Open Hole/Drill pipe/HWDP = 0.0459 ft. Volume Casing/Drill Pipe = 0.0515 bbl/ft. LOT DATA: Shoe Leaked at 1120 psi with 10.4 ppg MUD					
Drill Pipe 5", Capacity 5" HWDP = 180 ft. = capacity=0.0087 bbl/ft. 6 1/4 " Drill collar = capacity= 0.0061 bbl/ft. Mud in Use Volume Open Hole/Drill Collar Volume Open Hole/Drill pipe/HWDP Volume Casing/Drill Pipe = 0.0515 bbl/ft. LOT DATA: Shoe Leaked at 1120 psi with 10.4 ppg MUD		9 5/8 inch casing set at	= 9000 ft MD.		
5" HWDP = 180 ft. = capacity=0.0087 bbl/ft. 6 1/4" Drill collar = 150 ft. = capacity= 0.0061 bbl/ft. Mud in Use = 10.9 ppg. Volume Open Hole/Drill Collar = 0.0323 bbl/ft. Volume Open Hole/Drill pipe/HWDP = 0.0459 ft. Volume Casing/Drill Pipe = 0.0515 bbl/ft. LOT DATA: Shoe Leaked at 1120 psi with 10.4 ppg MUD					
= capacity=0.0087 bbl/ft. 6 1/4 " Drill collar = 150 ft. = capacity= 0.0061 bbl/ft. Mud in Use = 10.9 ppg. Volume Open Hole/Drill Collar = 0.0323 bbl/ft. Volume Open Hole/Drill pipe/HWDP = 0.0459 ft. Volume Casing/Drill Pipe = 0.0515 bbl/ft. LOT DATA: Shoe Leaked at 1120 psi with 10.4 ppg MUD		Drill Pipe 5", Capacity	= 0.0178 bbl/ft.		
6 ½ "Drill collar = 150 ft. = capacity= 0.0061 bbl/ft. Mud in Use = 10.9 ppg. Volume Open Hole/Drill Collar = 0.0323 bbl/ft. Volume Open Hole/Drill pipe/HWDP = 0.0459 ft. Volume Casing/Drill Pipe = 0.0515 bbl/ft. LOT DATA: Shoe Leaked at 1120 psi with 10.4 ppg MUD		5" HWDP	= 180 ft.		
= capacity= 0.0061 bbl/ft. Mud in Use = 10.9 ppg. Volume Open Hole/Drill Collar = 0.0323 bbl/ft. Volume Open Hole/Drill pipe/HWDP = 0.0459 ft. Volume Casing/Drill Pipe = 0.0515 bbl/ft. LOT DATA: Shoe Leaked at 1120 psi with 10.4 ppg MUD			* *		
Mud in Use = 10.9 ppg. Volume Open Hole/Drill Collar = 0.0323 bbl/ft. Volume Open Hole/Drill pipe/HWDP = 0.0459 ft. Volume Casing/Drill Pipe = 0.0515 bbl/ft. LOT DATA: Shoe Leaked at 1120 psi with 10.4 ppg MUD				20M	CO4
Volume Open Hole/Drill Collar = 0.0323 bbl/ft. Volume Open Hole/Drill pipe/HWDP = 0.0459 ft. Volume Casing/Drill Pipe = 0.0515 bbl/ft. LOT DATA: Shoe Leaked at 1120 psi with 10.4 ppg MUD			· ·		
Volume Open Hole/Drill pipe/HWDP = 0.0459 ft. Volume Casing/Drill Pipe = 0.0515 bbl/ft. LOT DATA: Shoe Leaked at 1120 psi with 10.4 ppg MUD					
Volume Casing/Drill Pipe = 0.0515 bbl/ft. LOT DATA: Shoe Leaked at 1120 psi with 10.4 ppg MUD		-			
LOT DATA: Shoe Leaked at 1120 psi with 10.4 ppg MUD		1 11			
		Volume Casing/Drill Pipe	= 0.0515 bbl/ft.		
Mud Pump Out Put = 0.12 bbl/stks.		LOT DATA: Shoe Leaked at 1120 psi with	10.4 ppg MUD		
		Mud Pump Out Put	= 0.12 bbl/stks		
Slow Circulating Pressure = 625 psi at 30 spm.		1			
Well Kick Data:		_	_ 020 psi at 00 spiii.		
$\frac{\text{Well Rick Bata.}}{\text{SIDPP}} = 875 \text{ psi.}$			= 875 psi		

	CP	= 895 psi.	
Pit	Gain	= 15 bbl.	
Als	so, fill the following data from filled kill sh	neet	
(i)	Strokes surface to bit	=	
	strokes.		
(ii)	Strokes bit to shoe	=	
	strokes.		
(iii)	Strokes bit to surface	=	
	strokes.		
(iv)	Kill Mud weight	=	
` '	ppg.		
(v)	Initial circulating Pressure	=	
	psi.		
(vi)	Final Circulating Pressure	=	
, .	psi.		
(vii)	MAASP with current mud weight	=	
, , ,	psi.		
(viii)	MAASP after circulation of kill mud	=	
, , ,	psi.		
(ix)	Time for complete circulation	=	
, ,	min.		
(x)	Circulating Pressure at KOP	=	
	psi.		
(xi)	Circulating Pressure at EOB	=	
	psi.		
(xii)	Pressure Drop/ 100 strokes up to KOP	=	
	psi/ 100 strokes.		
(xiii)	Pressure Drop/ 100 strokes from KOP to 1	EOB =	
	psi/ 100 strokes.		
(xiv)	Pressure Drop/ 100 strokes from EOB to 1	bit. =	
	psi/ 100 strokes.		