Name: Enrolment No:					
Programme Name: B. Tech. APE (Gas) Course Name : Natural Gas Engineering Course Code : CHCE 3001 Nos. of page(s) : 23 Instructions: \checkmark Draw diagrams wherever necessary \checkmark Attempt questions in sequence \checkmark Appendix with all the tables and graph			UDIES Semester Time Max. Mark tion paper	IV 03 hrs 00	
SECTION A (5 X 12= 60 Marks) Answer all questions					
S. No.				Marks	CO
1.	For the gas composition given below, calculate the following at 2000 psia and $60^{\circ} \mathrm{F}$. a) the gas gravity b)pseudocritical pressure and pseudo critical temperature using kays mixing rule c)compressibility of gas Note: The temperature has to be taken as $\mathbf{T}=60^{\circ} \mathrm{F}+$ Roll Number Eg: If your roll no is 1 then the Temperature that needs to be considered will be $60+1=61^{\circ} \mathrm{F}$, if your roll no is 12 the temperature you need to consider will be $\mathbf{6 0 + 1 2 = 7 2}{ }^{\mathbf{F}} \mathrm{F}$ If your roll no is $\mathbf{1 2 1}$ then the temperature you need to consider will be $60+121=181^{\circ} \mathrm{F}$			12M	CO1
2.	Explain the p Is it possible	ase diagrams for urately predict the		12M	CO 2
3.	A gas is being of specific he butanes to be	pressed from 100 or the natural gas butane and C5+f	mine the ratio low. Assume	12M	

	Component	Mol fraction			CO3
	Methane	0.8754			
	Ethane	0.0627			
	Propane	0.0374			
	Butanes	0.0138			
	Pentanes and above	0.0107			
4.	Calculate the hourly f Base Conditions: $\mathrm{P}_{\mathrm{b}}=1$ Pipe Dimension: 4-in measured upstream. Orifice plate: stainless Readings: Elevation $=500 \mathrm{ft}$ Latitude $=66^{\circ}$ Atmospheric pressure Flowing temperature= Gas specific gravity=0. Differential pressure $=$ Static pressure $=641 \mathrm{p}$ $\begin{array}{r} \mathrm{g} \\ =3.2808 \times 10^{-2}(9.780 \\ \times 10^{-3} L^{2}-1.5058 \times 1 \\ L=\text { latitud } \\ H=\text { elevati } \end{array}$ Neglect F_{a}.	rate of natura $5 \mathrm{psia}, \mathrm{T}_{\mathrm{b}}=60^{\circ}$ edule $40(\mathrm{D}=$ eel, orifice dia 4.4 psia $0^{\circ} \mathrm{F}$ in . water col $55 \times 10^{2}-2.82$ $L^{3}-9.4 \times 10^{-5}$ deg. above the sea le	or the conditions given as follows: in ID), flange taps, static pressure $=1.5$ in ${ }^{-3} L+2.029$	12M	CO4
5.	A separator to be ope flow rate 8 MMsfcd at for a vertical separato density of $52 \mathrm{lbm} / \mathrm{ft}^{3}$, $100^{\circ} \mathrm{F}$, a retention tim	at 1000 psi GLR =40 bbl/ orizontal sepa al gas with g 3 min and half	quired to handle a well stream with gas . Determine the separator size required d a spherical separator. Assume a liquid 0.80 an operating temperature equal to f liquid conditions.	12M	CO5

	SECTION B ($2 \times 20=40$ Marks) Question 6 is compulsory. Internal choice in Q7.		
6.	a) Explain the working of a reciprocating positive displacement compressor and the various steps in a reciprocating compressor cycle with a neat diagram? b) A flow rate across a 3 in [2.9 in ID] pipeline is expected to be 1.5 MMSCFD. The line pressure is 200 psia . The gas gravity is 0.6 and the upstream temperature is $75^{\circ} \mathrm{F}$ If the ideal range of differential pressure is 100 in of water and flange taps are used, what orifice plate diameter do we need to use? Assume $\mathrm{Fr}=\mathrm{Fpb}=\mathrm{Ftb}=\mathrm{Y}=1$, Neglect Fm, Fl and Fa . z factor at 200 psia and $75^{\circ} \mathrm{F}$ is 0.9682 . c) For a well stream having a composition shown as follows find the optimum second stage pressure for a three stage separation, if $\mathrm{p}_{1}=800$ psia..Use the Whinery-campbell method.	$\begin{gathered} (6+7+7) \\ 20 \mathrm{M} \end{gathered}$	$\begin{gathered} \mathrm{CO} 3 \\ \& \\ \mathrm{CO} 4 \\ \& \\ \mathrm{CO} 5 \end{gathered}$
7.	a) Determine the number of stages (n) required to compress 70 to 4310 kPa (gauge) with a compression ratio of $3: 1$, and calculate the exit temperature $\left(\mathrm{T}_{2}\right)$ if the compression is carried using a single stage if the gas enters first stage at 300 K and the ratio of specific heats is 1.15 . b) Explain the orifice metering system in detail with neat diagrams. c) A 0.7 gravity gas at $150^{\circ} \mathrm{F}$ is expanded through a choke, so that its pressure is reduced by 2000 psig..What is the temperature drop if the initial pressure is :1) 3500 psig and 2) 4500 psig 3) what is the final temperature if the gas is initially at 3000 psig and $170^{\circ} \mathrm{F}$ and the pressure is reduced to 200 psig .	$\begin{gathered} (7+6+7) \\ 20 \mathrm{M} \end{gathered}$	$\begin{gathered} \mathrm{CO} 3 \\ \& \\ \mathrm{CO} 4 \\ \& \\ \mathrm{CO} 5 \end{gathered}$
	Or		

7.	a) Estimate the brake horse power (BHP) needed to compress 35MMscfd of the gas from 10 to 625 psig . Assume the intake temperature $\left(\mathrm{T}_{1}\right)$ be $80^{\circ} \mathrm{F}, \mathrm{Z}_{1}=1$ and the ratio of specific heats is 1.15 . b) Calculate the basic orifice factor, Reynolds number factor, Expansion factor and super compressibility factor (by specific gravity method) from a well with the following orifice meter information: Pipe diameter: 8-in nominal (8.071 in. ID) Orifice diameter $=3.0 \mathrm{in}$. Gas specific gravity $=0.6$ Flowing temperature $=85^{\circ} \mathrm{F}$ Static pressure reading $=110 \mathrm{psia}$ Differential pressure reading $=175.5$ in. water, Pipe taps downstream Assume base conditions of 14.73 psia and $60^{\circ} \mathrm{F}$ and that the gas has (in mole $\%$): $\mathrm{CO}_{2}=1.2, \mathrm{~N}_{2}=0.58$. c) Explain the significance of low temperature separation?	$\begin{gathered} (7+7+6) \\ 20 \mathrm{M} \end{gathered}$	$\begin{gathered} \mathrm{CO} 3 \\ \& \\ \mathrm{CO} 4 \\ \& \\ \mathrm{CO} 5 \end{gathered}$

Appendix

Table 3-1
 Physical Constants for Typical Natural Gas Constituents*

	Molecular Weight	Critical Pressure (psia)	Critical Temp. $\left({ }^{\circ} \mathrm{R}\right)$	Crit. Comp. Factor $\left(\mathbf{Z}_{\mathrm{c}}\right)$	Acentric Factor (ω)	Eykman Mol Refraction ${ }^{*}$ (EMR)
Compound						
CH_{4}	16.043	667.8	343.1	0.289	0.0115	13.984
$\mathrm{C}_{2} \mathrm{H}_{6}$	30.070	707.8	549.8	0.285	0.0908	23.913
$\mathrm{C}_{3} \mathrm{H}_{8}$	44.097	616.3	665.7	0.281	0.1454	34.316
$n-\mathrm{C}_{4} \mathrm{H}_{10}$	58.124	550.7	765.4	0.274	0.1928	44.243
$i-\mathrm{C}_{4} \mathrm{H}_{10}$	58.124	529.1	734.7	0.283	0.1756	44.741
$n-\mathrm{C}_{5} \mathrm{H}_{12}$	72.151	488.6	845.4	0.262	0.2510	55.267
$i-\mathrm{C}_{5} \mathrm{H}_{12}$	72.151	490.4	828.8	0.273	0.2273	55.302
$n-\mathrm{C}_{6} \mathrm{H}_{14}$	86.178	436.9	913.4	0.264	0.2957	65.575
$n-\mathrm{C}_{7} \mathrm{H}_{16}$	100.205	396.8	972.5	0.263	0.3506	75.875
$n-\mathrm{C}_{3} \mathrm{H}_{15}$	114.232	360.6	1023.9	0.259	0.3978	86.193
$n-\mathrm{C}_{2} \mathrm{H}_{20}$	128.259	332.0	1070.4	0.251	0.4437	96.529
$n-\mathrm{C}_{10} \mathrm{H}_{22}$	142.286	304.0	1111.8	0.247	0.4902	106.859
$\mathrm{~N}_{2}$	28.013	493.0	227.3	0.291	0.0355	9.407
CO_{2}	44.010	1070.9	547.6	0.274	0.2250	15.750
$\mathrm{H}_{2} \mathrm{~S}$	34.076	1306.0	672.4	0.266	0.0949	19.828
O_{2}	31.999	737.1	278.6	0.292	0.0196	8.495
H_{2}	2.016	188.2	59.9	0.304	-0.2234	4.450
$\mathrm{H}_{2} \mathrm{O}$	18.015	3203.6	1165.1	0.230	0.3210	-

Table 1: Physical properties and critical constants

Fig 1: Browns Method chart

Fig. 2.9 Variation of $c_{r} T_{r}$, with reduced temperature and pressure ($1.4 \leq T_{r} \leq 3.0$; $0.2 \leqslant p_{r}<15.0$). (After Mattar, Brar, and Aziz.)

Figure 2

Table 3-3*
Molal Heat Capacity (Ideal-Gas State), Btu/(lb mol- ${ }^{\circ} \mathrm{R}^{*}{ }^{*}$)

Gas	Chemical formula	Mol wt	$0^{\circ} \mathrm{F}$	$50^{\circ} \mathrm{F}$	$60^{\circ} \mathrm{F}$	$100^{\circ} \mathrm{F}$	$150^{\circ} \mathrm{F}$	$200{ }^{\circ} \mathrm{F}$	$250{ }^{\circ} \mathrm{F}$	$300^{\circ} \mathrm{F}$
Methane	CH_{4}	16.043	8.23	8.42	8.46	8.65	8.95	9.28	9.64	10.01
Ethyne (Acetylene)	$\mathrm{C}_{2} \mathrm{H}_{2}$	26.038	9.68	10.22	10.33	10.71	11.15	11.55	11.90	12.22
Ethene (Ethylene) .	$\mathrm{C}_{2} \mathrm{H}_{4}$	28.054	9.33	10.02	10.16	10.72	11.41	12.09	12.76	13.41
Ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	30.070	11.44	12.17	12.32	12.95	13.78	14.63	15.49	16.34
Propene (Propylene)	$\mathrm{C}_{3} \mathrm{H}_{6}$	42.081	13.63	14.69	14.90	15.75	16.80	17.85	18.88	19.89
Propane	$\mathrm{C}_{3} \mathrm{H}_{8}$	44.097	15.65	16.88	17.13	18.17	19.52	20.89	22.25	23.56
1 -Butene (Butylene)	$\mathrm{C}_{4} \mathrm{H}_{8}$	56.108	17.96	19.59	19.91	21.18	22.74	24.26	25.73	27.16
cis-2-Butene	$\mathrm{C}_{4} \mathrm{H}_{8}$	56.108	16.54	18.04	18.34	19.54	21.04	22.53	24.01	25.47
trans-2-Butene	$\mathrm{C}_{4} \mathrm{H}_{8}$	56.108	18.84	20.23	20.50	21.61	23.00	24.37	25.73	27.07
iso-Butane	$\mathrm{C}_{4} \mathrm{H}_{10}$	58.124	20.40	22.15	22.51	23.95	25.77	27.59	29.39	31.11
n-Butane	$\mathrm{C}_{4} \mathrm{H}_{10}$	58.124	20.80	22.38	22.72	24.08	25.81	27.55	29.23	30.90
iso-Pentane	$\mathrm{C}_{5} \mathrm{H}_{12}$	72.151	24.94	27.17	27.61	29.42	31.66	33.87	36.03	38.14
n-Pentane	$\mathrm{C}_{5} \mathrm{H}_{12}$	72.151	25.64	27.61	28.02	29.71	31.86	33.99	36.08	38.13
Benzene	$\mathrm{C}_{6} \mathrm{H}_{6}$	78.114	16.41	18.41	18.78	20.46	22.45	24.46	26.34	28.15
n-Hexane	$\mathrm{C}_{6} \mathrm{H}_{44}$	86.178	30.17	32.78	33.30	35.37	37.93	40.45	42.94	45.36
n-Heptane	$\mathrm{C}_{7} \mathrm{H}_{16}$	100.205	34.96	38.00	38.61	41.01	44.00	46.94	49.81	52.61
Ammonia	NH_{3}	17.031	8.52	8.52	8.52	8.52	8.52	8.53	8.53	8.53
Air		28.964	6.94	6.95	6.95	6.96	6.97	6.99	7.01	7.03
Water	$\mathrm{H}_{2} \mathrm{O}$	18.015	7.98	8.00	8.01	8.03	8.07	8.12	8.17	8.23
Oxygen	O_{2}	31.999	6.97	6.99	7.00	7.03	7.07	7.12	7.17	7.23
Nitrogen	N_{2}	28.013	6.95	6.95	6.95	6.96	6.96	6.97	6.98	7.00
Hydrogen	H_{2}	2.016	6.78	6.86	6.87	6.91	6.94	6.95	6.97	6.98
Hydrogen sulfide	$\mathrm{H}_{2} \mathrm{~S}$	34.076	8.00	8.09	8.11	8.18	8.27	8.36	8.46	8.55
Carbon monoxide	CO	28.010	6.95	6.96	6.96	6.96	6.97	6.99	7.01	7.03
Carbon dioxide ...	CO_{2}	44.010	8.38	8.70	8.76	9.00	9.29	9.56	9.81	10.05

Table-2 Molal heat capacity

Figure 3

Table 10-2
Flange Taps-Basic Orifice Factors- F_{b}
Base temperature $=60^{\circ} \mathrm{F} \quad$ Flowing temperature $=60^{\circ} \mathrm{F} \quad \sqrt{h_{\mu_{1} p_{f}}}==$ Base pressure $=14.73$ psia \quad Specific gravity $=1.0 \quad h_{w} / p_{r}=0$

Pipe Sizes-Nominal and Published Inside Diameters, Inches

Orifice Diameter, in.	2			3				4	
	1.689	1.939	2.067	2.300	2.626	2.900	3.068	3.152	3.438
0.250	12.695	12.707	12.711	12.714	12.712	12.708	12.705	12.703	12.697
0.375	28.474	28.439	28.428	26.411	28.393	28.382	28.376	28.373	28364
0.500	50.777	50.587	50.521	50.435	50.356	50.313	30.292	50.284	50.258
0.625	80.090	79.509	79.311	79.052	78.818	78.686	78.623	78.596	78.523
0.750	117.09	115.62	115.14	114.52	113.99	113.70	113.56	113.50	11133
0.875	162.95	159.56	155.47	157.12	156.00	155.41	155.14	155.03	154.71
1.000	219.77	212.47	210.22	207.44	205.18	204.04	203.54	203.33	202.75
1.125	290.99	276.20	277.70	266.35	262.06	259.95	259.04	258.65	257.63
1.250	385.78	353.58	345.13	335.12	327:39	323.63	322.03	321.37	319.61
1.375			433.50	415.75	402.18	395.80	393.09	391.97	389.03
1.500			542.26	510.86	487.98	477.36	472.96	471.14	466.39
1.625				623.91	586.82	569.65	562.58	559.72	552,31
1.750					701.27	674.44	653.42	658.96	647,54
1.875						793.88	777.18	770.44	753.17
2.000						930.65	906.01	896.06	870.59
2.125						1091.2	1052.5	1038.7	1001.4
2.250							1223.2	1199.9	1147.7
2.375									1311.7
2.500									1498.4
Orifice Diameter, in.	4		6				8		
	3.826	4.026	4.897	5.182	5.761	6.065	7.625	7.981	8.071
0.250	12.687	12.683							
0.375	28.353	28.348							
0.500	50.234	50.224	50.197			50.178			
0.625	78.450	78.421	78.338	78.321	78.296	78.287			
0.750	113.15	113.08	112.87	112.82	112.75	112.72			
0.875	154.40	154.27	153.86	153.78	153.63	153.56	153.34	153.31	153.31
1.000	202.20	201.99	201,34	201.19	200.\%	200.85	200.46	20039	200.38
1,125	256.69	256.33	255.31	255.08	254.72	25456	253.99	253.69	253.87
1.250	318.03	317.45	315.83	315.48	314.95	314.72	313.91	313.78	313.74
1,375	336.45	$385,51$	382.99	382.47	$381,70$	381.37	360.25	380.06	$380,02$
1.500	462.27	460.79	456.93	456.16	455.03	454.57	453.02	452.78	452.72
1.625	545.89	543.61	537.77	536.64	535.03	534.38	532.27	531.95	531.87
1.750	637.84	634.39	625.73	624.09	821.79	620.88	618.02	617.60	617.50
1.875	738.75	733.68	721.03	718.69	715.44	$714: 19$	710.32	709.77	709.64
2.000	8.99 .41	842.12	823.99	820.68	816.13	814.41	809.22	808.50	808.34
2.125	970.95	960.48	934.97	930.35	924.07	921.71	914.79	913.86	913.64
2.250	1104.7	1089.9	1054.4	1048.1	1039.5	1036.3	1027.1	1025.9	1025.6
2.375	1252.1	1231.7	1182.9	1174.2	1162.6	1158.3	1146.2	1144.7	1144.3
2.500	1415.0	1387.2	1320.9	1309.3	1293.8	1288.2	1272.3	1270.3	1269.8
2.625	1595.6	1558.2	1469.2	1453.9	1433.5	1426.0	1405.4	1402.9	1402.3
2.750	1797.1	1746.7	1628.9	1608.7	1582.1	1572.3	1545.7	1542.5	1541.8
2.875		1955.5	1801.0	1774.5	1740.0	1727.5	1693.4	$1689,3$	1688.4
3.000		2194.9	1986.6	1952.4	1907.8	1891.9	1848.6	1843.5	1842.3
3.125					2096.4	2066, 1	2011.6	2005.2	2003.8
$3: 250$			2404.2	2348.8	2276.5	2250.8	2782.6	2174.6	2172.9
3.375 3.500			2639.5	2569.8	2479.1	2446.8	2361.8	2352.0	2349.9
3.500			2895.5	2808.1	2695.1	2654.9	2654.9	2537.7	2535.0

From Orifice Metering of Naturat Gas, 1969; courtesy of AGA.
(table continued)

Table 10-3 Continued
"b" Values for Reynolds Number Factor F, Determination-Flange Taps

Orifice Diameter in.	4		6				8		
	3.826	6.4 .026	6 $\quad 4.897$	7.189	9.761	6.065	7.625	57.981	8.071
0.250	0.1047	$7 \quad 0.1054$							
0.375	0.0894	4.0 .0907							
0.500	0.0763	30.0779	$9 \quad 0.0836$	$6 \quad 0.0852$	20,0880	. 0.0892			
0.625	0.0653	$3 \quad 0.0670$	$0 \quad 0.0734$	$4 \quad 0.0753$	$3 \quad 0.9785$	0.0801			
0.750	0.0561	10.0578	0.0645	50.0665	50.0701	0.0718			
0.875	0.0487	$7 \quad 0.0502$	20.0567	$7 \quad 0.0587$	$7 \quad 0.0625$	0.0643	0.0723	30.0738	0.0742
1.000	0.0430	$0 \quad 0.0442$	20.0500	0.0520	0.0557	0.0576	0.0660	0.0676	0.0680
1.125	0.0388	80.0396	. 0.0444	0.0462	20.0498	0.0517	0.0602	0.0619	
1.250	0.0361	0.0364	0.0399	0.0414	0.0447	0.0464	0.0549	+0.0566	0.0623 0.0571
1.375	0.0347	70.0344	0.0363	0.0375	0.0403	0.0419	0.0501	0.0518	0.0523
1.500	0.0345	0.0336	0.0336	0.0344	0.0367	0.0381	0.0457		
1.625	0.0354	0.0338	0.0318	0.0322	0.0337	0.0348	0.0418	0.0435	0.0479
1.750	0.0372	0.0350	0.0307	0.0306	0.0314	0.0322	0.0383	0.0399	0.0403
1.875	0.0398	0.0370	0.0305	0.0298	0.0298	0.0303	0.0353	0.0366	0.0371
2.000	0.0430	$0.0,395$	0.0308	0.0296	0.0287	0.0288	0.0327	0.0340	0.0343
2.125	0.0467	0.0427	0.0318	0.0300	0.0281	0.0278	0.0304	0.0315	
2.250	0.0507	0.0462	0.0334	0.0310	0.0281	0.0274	0.0286	0.0295	0.0318 0.0297
2.375	0.0548	0.0501	0.0354	0.0324	0.0286	0.0274	0.0271	0.0278	0.0280
2.500	0.0589	0.0540	0.0378	0.0342	0.0295	0.0279	0.0259	0.0264	0.0265
2.625	0.0626	0.0579	0.0406	0.0365	0.0308	0.0287	0.0251	0.0253	0.0254
2.750	0.0659	0.0615	0.0436	0.0391	0.0324	0.0300	0.0246	0.0245	0.0245
2.875		0.0647	0.0468	0.0418	0.0343	0.0314	0.0244	0.0240	0.0240
3.000		0.0673	0.0500	0.0448	0.0366	0.0332	0.0245	0.0238	0.0237
3.125			0.0533	0.0479	0.0389	0.0353	0.0248	0.0239	
3.250			0.0564	0.0510	0.0416	0.0375	0.0254	0.0242	
3.375 3.500			0.0594	0.0541	0.0443	0.0400	0.0263	0,0248	0.0244
3.500 3.625			0.0620	0.0569	0.0472	0.0426	0.0273	0.0255	0.0251
3.625 3.750			0.0643	0.0597	0.0500	0.0452	0.0286	0.0265	0.0260
3.750 3.875				0.0621	0.0527	0.0479	0.0300	0.0274	0.0271
3.875				0.0640	0.0553	0.0505	0.0316	0.0289	0.02283
4.000					0.0578	0.0531	0.0334	0.0304	0.0297
4.250					0.0620				
4.500						0.0618	0.0414	$\begin{aligned} & 0.0338 \\ & 0.0386 \end{aligned}$	$\begin{aligned} & 0.0330 \\ & 0.0366 \end{aligned}$
4.750 5.000							0.0457	0.0416	0.0405
5.000							0.0500	0.0457	0.0446
5.250									
5.500							$\begin{aligned} & 0.0539 \\ & 0.0574 \end{aligned}$	$\begin{aligned} & 0.0497 \\ & 0.0535 \end{aligned}$	$\begin{aligned} & 0.0487 \\ & 0.0524 \end{aligned}$
5.750 6.000								0.0569	0.0559
6.000									0.0588
Orifice Diameter, in.	10			12			16		
	9.564	10.020	$10.136 \quad 1$	11.376	11.938	12.090	14.688	15.000	15.250
1.0000	0.0738								
1.1250	0.0685	0.07010.0652	0.0705						
1.2500	0.0635		0.0656	0.0698	0.0714	0.0718			
1.375 1.500	0.0588	0.0606	$\begin{aligned} & 0.0610 \\ & 0.0568 \end{aligned}$	0.0654	0.0671	0.0676			
$\begin{array}{ll}1.500 \\ 1.625 & 0 \\ 1.750\end{array}$	0.05450	0.05630			0.0637	0.06350.0597			
1.750	$\begin{array}{ll}0.0564 & 0 . \\ 0.0467 & \end{array}$	0.0523	0.05270.0490	$\begin{array}{ll}0.0573 & 0 \\ 0.0536 & 0.05\end{array}$	0.05920		$\begin{aligned} & 0.0706 \\ & 0.0670 \end{aligned}$	$\begin{array}{ll}0.0713 \\ 0.0678 & 0\end{array}$	0.0684
	0.04670	0.0485			0.0555	0,0560 0	0.0636	$0.0644 \quad 0$	0.0650

Table 10-4
Y_{1} Expansion Factors-Flange Taps Static Pressure Taken from Upstream Taps

Table 10-7

F_{b} Basic Orifice Factors-Pipe Taps

	$\begin{aligned} & \text { Basic temperature }=60^{\circ} \mathrm{F} \\ & \text { Base pressure }=14.73 \mathrm{p} \\ & \text { Pipe Sizes-Nominal } \end{aligned}$			$\begin{aligned} & \text { Flowing temperature }=60^{\circ} \mathrm{F} \\ & \text { sia } \quad \text { Specific gravity }=1.0 \\ & \text { and Published Inside Diameters, } \end{aligned}$			$\begin{aligned} & \quad \sqrt{h_{m p f}}=\infty \\ & h_{w} / p f=0 \\ & \text { Inches } \end{aligned}$		
Orifice	2			3				4	
in.	1.689	1.939	2.067	2.300	2.626	2.900	3.068	3.152	3.430
0.250	12.850	12.813	12.890	12.782	12.765	12.753	12.748	12.745	12.737
0.375	29.359	29.097	29.005	28.862	28.721	28.710	28.682	28.669	28.634
0.500	53.703	52.876	52.401	52.019	51.591	51.353	51.243	51.19	51.064
0.625	87.212	84.919	84.083	82.922	81.795	81.142	80.835	80.703	80.332
0.750	132.23	126.86	124.99	122.45	120.06	118.67	118.00	117.70	116.86
0.875	192.74	181.02	177,08	171.92	167.23	164.58	163,31	162.76	161.17
1.000	275.45	251.10	243.27	233.30	224.56	219.76	217.52	216.55	213.79
1.125	397.93	342.98	327.98	309.43	293.79	285.48	281.66	280.02	275,42
1.250		465.99	437.99	404.52	377.36	363.41	357.12	354.45	347.03
1.375				524.68	478.68	455.82	445.74	441.48	429.83
1.500				679,10	602.45	565.79	549.94	54331	525.40
1.625					755.34	697.43	672.95	662.81	635.76
1.750				,	946.99	856.37	819.05	803.77	763.51
1.875						1050.4	993.98	971.19	911.98
						1290.7	1205.6	1171.8	1085.5
							1465.1	1415.0	
2.250							1465.1	1415.0	1532.0
2.375									1822.8
Orifice Diameter, in.	4		6				8		
	3.826	4.026	4.897	5.189	5.761	6.065	7.625	7.981	8.077
	12.727								
0.375	26.598	28.584							
0.500	50.936	50.886	50.739	50.705	50.652	50.628			
0.625	79.974	79.835	79.436	79.349	79.217	79.162			
0.750	116.05 1595 195	115.73 150.94	174.81	114.61 156.71	114.32	114.20			
0.875 1.000	159.57 211.03	158.94 209.91	157.11 206.62	156.71	156.13	155.89	155.10		
1.000	211.03	209.91	206.62	205.91	204.84	204.41	203.00	202.80	202.75
1.125	270.90	269.10	263.71	262.51	260.71	259.98			
1.250	339.87	337.05	328.73	326.85	324.02	322.86	319.10	318.56	318.44
1.375	488.79 508	414.51	402.06	399.30	39508	393.33	387.62	386.81	386.62
1.500 1.650	508.76	502.38	$\begin{array}{r}484.20 \\ \\ \hline 75\end{array}$	480.23	474.20	471.69	463.39	462.19	461.92
1.625 1.750	611.11 727.54	601.80 714.16	575.73 677.38	570.14	561.73 658.08	555.24 653.33	546.61	544.92	544.53
1.750 1.875	727.54 860.17	714.16 841.19	677.38 789.99	669.63 779.40	658.08 763.77	653.33 757.39	637.51 736.34	635.19 733.29	634.65 732.52
1.875 2000	${ }^{860.17}$	891.19 985.04	789.99 914.57	779.40 900.28	763.77 879.38	757.39 870.93	736.34 843,34	733.23 839.29	732.52 838.35
2.125	11853	1748.4	1052.3	1033.2	1005.6	994.52	958.78	953.58	952.38
2.250	1385.4	1334.4	1204.7	1179.4	1143.2	1128.8	1083.0	1076.4	1074.9
2375 2.300	1617.2	1547.3	1333.4	1340.2	1299.1	1274.6	1216.3	1208.0	1206.1
2.500 2.655	1887.6 22060	1792.3 2095	1560.5	15172	1456.4	14327	13592	1348.8	13465
2.625 2.750	2206.0	2005.9	1768.3 19998	17123	1634.3	1604.3	1512.0	1499.2	1496.3
2.875		2407.0	1999.8 2258.5	1927.6 2165.9	18283 2039	1790.3	1675.4 1849.9	1659.7	1656.1
3.000			2548.6	2165.9 2430.2		1992.2 2211.6	1849.9 2036.0	1830.6 2012.7	1826.3 2007.3
3.125			2875.2	2724.4	2524.3	2450.1			
3.250 3.375			324.8	3052.8	2801.8	2709.9	2446.5	2412.4	2404.7
3.375 3.500			3665.6	3420.9	3106.9	29933	2672.5	2631.6	2622.3
3.625				3835.7 43057	3443.0	3303.0	2973.7	2884.7	2883.7
3.750				4305.7	3914.4 42763	3642.3	3171.7 3446.0	3112.7 3376.6	3099.6 33610
3.875					4266.3 4684.9	4014.8	3446.0 3739.9	3376.6 3657.6	3361.0 36392
4.000					5197.7	4878.4	4054.2	3957.0	3935.2

From Orifice Metering of Natural Gas, 1969; courtesy of AGA.

Table 10-8

"b" Values for Reynolds Number Factor F, Determination-Pipe Taps

$$
F_{r}=1+\frac{b}{\sqrt{h_{m} p f}}
$$

Pipe Sizes-Nominal and Published Inside Diameters, Inches

Orifice	2			3				4	
in.	1.689	1.939	2.067	2.300	2.626	2.900	3.068	3.152	3.438
0.250	0.1105	0.1097	0.1087	0.1081	0.1078	0.1078	0.1080	0,1081	0.1084
0.375	0.0890	0.0878	0.0877	0.0879	0.0888	0.0898	0.0905	0.0908	0.0918
0.050	0.0758	0.0734	0.0729	0.0728	0.0737	0.0750	0.0758	0.0763	0.0778
0.625	0.0693	0,0647	0.0635	0.0624	0.0624	0.0634	0.0642	0.0646	0.0662
0.750	0.0675	0.0608	0.0586	0.0559	0.0546	0.0548	0.0552	0.0555	0.0568
0,875	0.0684	0.0602	0.0570	0.0528	0.0497	0.0488	0.0488	0.0489	0.0496
1.000	0.0702	0,0614	0.0576	0.0522	0.0473	0.0452	0.0445	0.0443	0.0443
1.125	0.0708	0.0635	0.0595	0.0532	0.0469	0.0435	0.0422	0.0417	0.0407
1.250		0.0650	0.0616	0.0552	0.0478	0.0434	0.0414	0.0406	0.0387
1.375			0.0629	0.0574	0.0496	0.0443	0,0418	0.0408	0.0379
1.500				0.0590	0.0518	0.0460	0.0431	0.0418	0.0382
1.625					0.0539	0.0482	0.0450	0.0435	0.0392
1.750					0.0553	0.0504	0.0471	0.0456	0.0408
1.875						0.0521	0.0492	0.0477	0.0427
2.000						0.0532	0.0508	0.0495	0.0448
2.125							0.0519	0.0509	0.0467
2.250									0.0483
2.375									0.0494
Orifice Diameter, in.	4		6				8		
	3.826	4.026	4.897	5.189	5.761	6.065	7.625	7.981	8.071
0.250	0.1087	0.1091							
0.375	0.0932	0.0939							
0.500	0.0799	0.0810	0.0850	0.0862	0.0883	0.0695			
0.625	0.0685	0.0697	0.0747	0.0762	0.0789	0.0802			
0.750	0.0590	0.0602	0.0655	0.0672	0.0703	0.0718			
0.875	0.0513	0.0524	0.0575	0.0592	0.0625	0.0642	0.0716	0.0730	0.0733
1.000	0.0453	0.0461	0.0506	0.0523	0.0556	0.0573	0.0652	0.0668	0.0662
1.125	0.0408	0.0412	0.0448	0.0454	0.0495	0.0512	0.0592	0.0609	0.0613
1.250	0.0376	0.0377	0.0401	0.0413	0.0442	0.0458	0.0538	0.0555	0.0560
1.375	0.0358	0.0353	0.0363	0.0373	0.0397	0.0412	0.0489	0.0506	0.0510
1.500	0.0350	0.0340	0.0334	0.0340	0.0360	0.0372	0.0445	0.0462	0.0466
1.625	0.0351	0.0336	0.0313	0.0315	0.0329	0.0339	0.0404	0.0427	0.0425
1.750	0.0358	0.0340	0.0300	0.0298	0.0304	0.0311	0.0369	0.0384	0.0388
1.875	0.0371	0.0349	0.0293	0.0287	0.0285	0.0290	0.0338	0.0352	0.0355
2.000	0.0388	0.0363	0.0292	0.0281	0.0273	0.0273	0.0311	0.0323	0.0327
2.125	0.0407	0.0360	0.0297	0.0281	0.0265	0.0262	0.0288	0.0298	0.0301
2.250	0.0427	0.0398	0.0305	0.0285	0.0261	0.0258	0.0268	0.0277	0.0280
2375	0.0445	0.0417	0.0316	0.0293	0.0262	0.0253	0.0252	0.0259	0.0261
2.500	0.0460	0.0435	0.0330	0.0304	0.0267	0.0254	0.0239	0.0244	0.0246
$\begin{aligned} & 2.625 \\ & 2.750 \end{aligned}$	0.0472	0.0450	0.0345	0.0317	0.0274	0.0258	0.0230	0.0232	0.0233
2.750 2.875		0.0462	0.0362	0.0331	0.0264	0.0265	0.0224	0.0224	0.0224
2.875 3.000			0.0379 0.0395	0.0347 0.0364	0.0295 0.0398	0.0274	0.0220	0.0218	0.0218
3.00			0.0395	0.0364	0.0308	0.0285	0.0219	0.0214	0.0213

From Orifice Metering of Natural Cas, 1969; courtesy of AGA.

Table 10-10
Y_{2} Expansion Factors-Pipe Taps
Static Pressure, Taken from Downstream Taps

$\begin{gathered} \frac{h_{n}}{p_{n}} \\ \text { Ratio } \end{gathered}$	0.1	0.2	0.3	0.4	0.45	0.50	0.52	0.54	$B=\frac{d}{D} \text { Ratio }$	
									0.56	0.56
0.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.1	1.0008	1.0008	1.0006	1.0003	1.0002	1.0000	0.9999	0.9998	0.9997	0.9996
0.2	1.0017	1.0015	1.0012	1.0007	1.0004	1.0000	0.9999	0.9997	0.9995	0.9993
0.3	1.0025	1,0023	1.0018	1.0010	1.0006	1.0000	0.9998	0.9995	0.9992	0.9989
0.4	1.0034	1.0030	1.0024	1.0074	1.0008	1.0001	0.9997	0.9994	0.9990	0.9986
0.5	1.0042	1.0038	1.0030	1.0018	1.0010	1.0001	0.9997	0.9992	0.9988	0.9982
0.6	1.0051	1.0045	1.0036	1.0021	1.0012	1:0001	0.9996	0.9991	0.9985	0.9979
0.7	1.0059	1.0053	1.0041	1.0025	1.0014	1,0002	0.9996	0.9990	0.9983	0.9975
0.8	1.0068	1.0060	1.0047	1.0028	1.0016	1.0002	0.9995	0.9988	0.9980	0.9972
0.9	1.0076	1.0068	1.0053	1.0032	1.0018	1,0002	0.9995	0.9987	0.9976	0.9969
1.0	1.0085	1.0075	1.0059	1,0036	1.0021	1.0003	0.9994	0.9986	0.9976	0.9965
1.1	1.0093	1.0083	1.0065	1.0039	1.0023	1.0003	0.9994	0.9984	0.9974	0.9982
1.2	1.0102	1.0091	1.0071	1.0043	1.0025	1.0004	0.9994	0.9983	0.9972	0.9959
1.3	1.0110	1.0098	1.0077	1.0047	1.0027	1.0004	0.9994	0.9982	0.9970	0.9956
1.4	1.0119	1.0106	1.0083	1,005	1.0030	1,0004	0.9993	0.9981	0.9968	0.9953
1.5	1.0127	1.0113	1.0089	1.0054	1.0032	1.0005	0.9993	0.9980	0.9966	0.9950
1.6	1.0136	1.0121	1.0096	1.0058	1.0034	1.0006	0.9993	0.9979	0.9964	0.9947
1.7	1.0144	1.0128	1.0102	1.0062	1.0036	1.0006	0.9992	0.9978	0.9962	0.9944
1.8	1.0153	1.0136	1.0108	1.0066	1.0039	1,0007	0.9992	0.9977	0.9960	0.9941
1.9	1.0161	1.0144	1.0114	1.0070	1.0041	1.0008	0.9992	0.9976	0.9958	0.9938
2.0	$1: 0170$	1.0151	1.0120	1.0073	1.0044	1.0008	0.9992	0.9975	0.9956	0.9935
2.1	1.0178	1.0159	1.0126	1.0077	1.0046	1.0009	0.9992	0.9974	0.9954	0.9932
2.2	1.0187	1.0167	1.0132	1,0081	1.0048	1,0010	0.9992	0.9973	0.9952	0.9929
2.3	1.0195	1.0174	1.0138	1.0085	1.0051	1.0010	0.9992	0.9972	0.9950	0.9927
24	1.0204	1.0182	1.0144	1.0089	1.0053	1.0011	0.9992	0.9971	0.9949	0.9924
25	1.0212	1.0189	1.0150	1.0093	1.0056	1.0012	0.9992	0.9971	0.9947	0.9921
2.6	1,0221	1.0197	1.0156	1.0097	1.0058	1.0013	0.9992	0.9970	0.9945	0.9919
2.7	1.0229	1.0205	1.0162	1.0101	1.0061	1.0014	0.9992	0.9969	0.9944	0.9916
2.8	1.0238	1.0212	1.0169	1.0104	1.0063	1.0014	0.9992	0.9968	0.9942	0.9914
2.9	1.0246	1.0220	1.0175	1.0108	1.0066	1.0015	0.9992	0.9968	0.9941	0.9911
30	1.0255	1.0228	1.0181	1.0112	1.0068	1.0016	0.9993	0.9967	0.9939	0.9908
3.1	1.0264	1.0235	1.0187	1.0116	1.0071	1.0017	0.9993	0.9966	0.9938	0.9906
3.2	1.0272	1.0243	1.0193	1.0120	1.0074	1.0018	0.9993	0.9966	0.9936	0.9904
33	1.0280	1.0250	1.0199	1.0124	1.0076	1.0079	0.9993	0.9965	0.9935	0.9901
3.4	1.0289	1.0258	1.0206	1.0128	1.0079	1.0020	0.9994	0.9965	0.9933	0.9899
3.5	1.0298	1.0266	1.0212	1.0133	1.0082	1.0021	0.9994	0.9964	0.9932	0.9896
3.6	1.0306	1.0273	1.0218	1.0137	1.0084	1.0022	0.9994	0.9964	0.9931	0.9894
3.7	1.0314	1.0281	1.0224	1.0141	1.0087	1.0024	0.9994	0.9963	0.9929	0,9892
3.8	1.0323	1.0289	1.0230	1.0145	1.0090	1.0025	0.9995	0.9963	0.9928	0.9890
3.9	1.0332	1.0296	1.0237	1.0149	1.0093	1.0026	0.9995	0.9963	0.9927	0.9886
4.0	1.0340	1.0304	1.0243	1.0153	1.0095	1.0027	0.9996	0.9962	0.9926	0.9885

From Orifice Metering of Natural Gas, 1969; courtesy of AGA.

Table 10－11a
Supercompressibility Pressure Adjustments，Δ p
（Based on Specifie Gravity Method）

Papsens Mivanient Infr． B	＊	Frenset，puil														
		3 P	axe	100	mex	（man）	リा0	Iune：	That	70\％	200．	7．	2use	2na	3 ma	me
－8t	＊	－1132	－22 65	－173\％	－n34	－14，${ }^{4}$	$-{ }^{-1 \%}$	－島3	－werm	－1ata	-71314	-12918	－vns	－10． 21	－tins	－6ads
－85	8	－1060	－ 218	－${ }^{\text {He }}$	－417	－324	－42 5	－28	－814	-948	－89\％	－195480	－1830	－theal	wient	－152．4
－0． 0	8	－ 48	－937	－2vxim	－314	48513	－510	－4， 6	－7ras	－ 4 w	－1546	二｜ek， 11	－471\％		－19n	$-14 .$
－at	8	－88	-176	－26	－8．30	－ 4418	－42x	－17 3	－281	－786	－1826	－var	－4514	－7567	－176	$-18 \text { 年 }$
－011	8	$=7$ m	－71\％	-21%	－31．4	－1204	arey	－4585	－488	－7is	－77\％	－8\％	－nty	－vas n	－4ti us	－vis．67
－03	8	－ 5,18	－14．35	－21．3	－3985	－15．8］	－4．84	－4985	－86\％	-1048	－ 7124	－7216	－8514	－3261	－пn	－185
48	8	－6\％	-12.83	－18－78	－25 44	－31．80	－3ts	－418	－5983	－-18.30	－case	－MA	－ $\mathrm{Cl}_{\text {a }}$	－ 21.18	－bive	－ 71.8
4	8	-18	－18．78	－1615	－213	－215 6	－1：3	-37π	－4）${ }^{\text {d }}$	－4381	-530	－3tin	－Heta	－Met	－ F 年	－ 0.8
＋61	1	－ 45	－3818	－1154	－1305	－22． 6	－274	-1818	－18．13	－4541	－47	＝ 6151	－ 1414	＋18	－41\％	－ c / ar
＋8．	8	－163	－314	＝16．9y	－34	－1813	－ $4 . \pi$	－35 3	－75	－795	－x．35	－3n	－4131	－474	－ 38	
－03	E	－17	－14t	－8m	－㷏51	－13 4	－4．7	－ 71.18	－74	－3499	－2．32	－304	－1878	-1503	－ 385	－axe
＋0．4	E	－ 1.81	－18	$-5 n$	$-7 R$	-8.16	－10x	－1201	－14．4	－ 114	－ 8.81	－ 208	－ 115	－137	－ 3 kz	－ 2125
－at	0	－ 4.4	－13t	－3\％	-318	－4．00	－35	－510	－ 11	－ 8.8	－873	－titit	-1130	-110	－ 12 ys	－117
40.4	E	6	3	1	0	0	0	－	\％	E	\％	－	4	3	in	9
492	5	की	15	8\％	37	4	35	4－3	784		93	\％ 38	418	13 ar	120	371
＋at	0	185	3π	597	78	94	76	tis	48	is78	15.64	398	ata	10．2）	35 ${ }^{\text {a }}$	20
$+89$	8	28）	5st	442	14	＊64	468	154	\＃${ }^{\text {a }}$	53\％	sest	＊＊	者年	368	H0	4.8
418	a	818	731	（12）	1300	12．3）	I25	3 x	318	$3)=$	$\mathrm{tr}_{68} \mathrm{fr}$	41） 78	ens	aty	80，	4．43
413	a	47	48	4878	4\％	280	2ss	118	时n	4．83	47%	319	47	i1 4	4．18	嗗要
＋15	8	$5 \times$	It itt	17 Fs	22π	317	3．71	\％	［1909	\＄1 71	\％ 0^{4}	426	皆男	Hest	NTH	窂4？
413	a	648	77\％	nes	70．m	73.40	43 am	mr	6tis	50.18	66	74	mess	58	219	（m）${ }^{\text {a }}$
＋14	\％	7 ct	83		Yese	（1）	esem	Bid	H5	Seer	N\％	3 y	＊2 6	nn	avil	W15
＋+1	8	3 cos	Ir：3	2504	14.0	at 11	486	เล＊	年）	2811	m_{48}	א．	TEepis	107\％	12130	7\％
＋18	1	3 in	now	2 cm	14.7	ats．	30．06	5\％	n 4	\％13	Nm	＋1646	175 16	185	1597	3173
＋1．7	8	TET	It 4 a	32.10	48	5180	Hi3	7es	里析	＊10	nete	17\％	188	TA） 7	109m	14．38
＋1．1	8	11.75	215	1517	$4{ }^{4} 8$	bass．	7015	An．${ }^{\text {a }}$	830	23089	178	12406	14812	1524	1982	715
＋18	E	8.71	35.4	4．71	Stan	230．	700	n7\％	1683	76e91	478	146 a 18200	153 185 154	HE	1070	Trisu
＋25	6	13 EP	17 ta	41／4	Shat	in 41	dis	W．7	134	13438	1825	15200	16584	相的	1714	200 30

Table 10-11b
Supercompressibility Temperature Adjustments, ΔT (Based on Specific Gravity Method)

Temperaner Aduatment Index, 5	Temperiature, \%										
	9	20	$4{ }^{4}$	60	50	160	*8	448	160	\% ${ }^{\text {m }}$	20
Q.43	75.78	Mas	31.70	sar	ne 34	H30	$9 \cdot \mathrm{rr}$	nom	102. 31	104.38	1014 3
6.46	45.41	7a	7.6	7etr	mal	3.90	E212	90.59	83.56	4	Nos*
6.4 7	13.\%	56.59		T20\%	74\%	7\% at	50.sy	nit	E5:1	4.70	Mis
e4s		60.tr	6130	E5 83	Hes	Tex	736	54	2e.40	51.3	$\stackrel{4}{47}$
Eta	481	43.w	1780	590	51 क 6	60. 28	4s	tisw	the	7 n	5.7\%
830	c) 58	48.54	Stes	327	58.78	378	4sw	Et. 38	6e.th	4611	tal 18
est	A. 31	4.75	46 EI	6趏	Ans	54.48	13,37	3324	578	$5{ }^{515}$	tan
+ 82	73	380	AEA	2\% 79	637	45 34	4tw	atu	Se 20	51 Al	51.4
0.50	32.26	3140	38 EW	3×4	39	7n 24	60^{48}	62tat	4.4.4	44.8	429
8.54	27.38	2xy	29.8	3nt	32.4		3.52	5	34.40	310\%	7, 28
[15s	2 w	235	26.5	25.54	3 nsp	27.31	28.4)	24.4	30.65	31.44	32.48
4.5\%	17.0	4 68	19.46	20.23	25.81	74	220	238	24.12	34×0	2 ck
6.57	13.88	3N0	16.45	B6a	74.51	15.18	476	173	1748	16.59	+10\%
0.58	4.38	416	4.34	3.72	73.30	19.8	140	11.45	1185	12.21	12.54
0.39	4.35	4.4	4.3	4.98	8.10	3.15	5 mm	± 67	5	s.ds	\$24
0.60	0	a	-	0	0	E	0	9	9	9	3
8. 61	- 478	- 46	- 8.64	- 4. 68	- 100	- 5.15	-13	- 5.57	-5.75	- 3.94	-611
64]	-4.45	- A88	-2.15	-956	- + \%	- 689	-rest	-179	-1140	-1t.\%	-12.13
363	-12.37	-12.11	-18.66	-7421	-1475	-1530	-11as	-16.39	-1694	$-174{ }^{\text {a }}$	-7893
864	-11.6t	-17.31	-18.65	-12n	-79.45	-30.72	-20.54	-2164	-2238	-22.10	-21.31
6. 65	-20.57	-210	-2216	- 2128	-26.15	-25.94	-3\%9	-240	-27n	-2162	-78.52
36	-24.4	-2531	-2560	-2748	-2872	-nso	-345	-31.91	-12	-494	-18.11
as	- 2424	-20.32	-10.5	- \#, m	-39n	-34.43		-M4	-7894	-1937	-6.6e
ane	-3206	-33.45	-34.54	-3024	$-37 / 43$	-3931	-40.43	-ctat	-437	-400	-3180
468	-1175	-1200	-18.4	-40.4)	-61.\%	-6152		-2t 63	-4619	-4974	-51.30
4.80	-3n. 38	-4t 10	-6241	- EL 38	-4531	-67.5s	-2\% 4	-31 31	-51. ${ }^{\text {a }}$	-5+ mo	-5451
at	-42.95	-44.28	-diss	-20. 38	-5e.e	-52.29	-54.16	-26.13	-57.90	-19\%	-41.5)
472	-4t.4t	-4t.es	- 50.90	$-\mathrm{bay}$	-34.54	-5s.14	-36 ca	- 80.80	-6262	-6rict	-646
37	-40,91	-910	-54.3	-5is. 42	-sers	-66. $\%$	-42.99	-55.10	-6.71	-69.44	-7.5
3.74	-8131	-15.63	-27.95	- 40.27	-42 59	-04.00	-4723	-6454	-riat	-N. 18	-74.45
ais	-3687	-30.44		-6ice	-463)	-68.	-714	-735	-7\% 48	-70.45	-\$1.31

TABLE A.35(a) (Continued)
$F_{p v}$ Supercompressibility Factors
Base Data-0.6 Specific Gravity Hydrocarbon Gas

$p_{\text {f }}$	Temperature ${ }^{\circ} \mathrm{F}$												
psig	60	65	70	75	80	85	90	95	100	105	110	115	120
0	1.0000	1.0000	1,0000	1.0000	7.0000	1.0000	1.0000	1.0000	1.000	1.000	1.0000	1.000	1.0000
20	1.0016	1,0015	1.0074	1.0014	1.0014	1.0073	1.0013	1.0012	1,0012	1.0012	1.0011	1.0011	1.0010
40	1.0032	1.0031	1.0030	1,0029	1.0028	1,0027	1.0027	1.0026	1.0025	1.0024	1.0023	1.0022	1.0022
60	1.0047	1.0046	1.0045	1.0043	1.0042	1.0040	1.0039	1.0038	1.0037	1.0036	1.0035	1.0033	1.0032
80	1.0064	1.0062	1.0067	1.0058	1.0056	1.0054	1.0052	1.0051	1.0049	1.0047	1.0046	1.0044	1.0043
100	1.0080	1.0078	1,0075	1.0073	1.0071	1,0068	1.0066	1.0064	1,0061	1.0059	1.0058	1,0056	55
120	1.0097	1.0094	1.0091	1.0088	1.0085	1.0082	1.0079	1,0076	1,0073	1.0071	1.0069	1.0067	1.0065
140	1.0112	1.0109	1.0105	1.0102	1.0099	1.0095	1.0092	1.0088	1.0085	1.0083	1,0080	1,0078	1,0076
160	1.0129	1.0125	1.0121	1.0117	1.0112	1.0108	1.0105	1.0101	1.0098	1.0095	1.0092	1.0089	1.0087
180	1.0145	1.0140	1.0136	1.0131	1.0126	1.0122	1,0118	1.0114	1.0111	1.0107	1,0103	1.0100	1.0098
200	1.0162	1.0156	1.0151	1.0146	1.0140	1.0135	1.0131	1.0127	1,0123	1.0119	1.0115	1.0111	1.0108
220	1.0178	1.0172	1,0166	1.0160	1.0154	1.0149	1,0145	1.0140	1,0136	1.0131	1.0126	1.0122	1.0119
240	1.0194	1.0188	1,0181	1,0175	1.0768	1.0163	1.0158	1.0153	1.0148	1.0143	1.0138	1,0133	1.0129
260	1.0211	1.0204	1.0197	1.0190	1.0183	1.0177	1.0171	1.0165	1.0160	1,0155	1.0150	1.0144	1.0139
280	1.0228	1.0220	1.0212	1.0205	1.0197	1.0191	1.0185	1.0178	1.0173	1.0167	1.0162	1.0155	1.0150
300	1.0244	1.0236	1.0228	1.0220	1.0212	1.0205	1.0199	1.0192	1.0185	1.0179	1.0173	1.0167	1.0162
320	1.0261	1.0252	1.0243	1.0235	1.0227	1.0219	1.0212	1.0205	1.0198	1.0191	1.0185	1.0178	1.0173
340	1.0277	1.0267	1.0258	1.0249	1.0241	1,0233	1,0225	1.0217	1.0209	1.0203	1.0196	1.0189	1.0183
360	1.0294	1.0284	1.0273	1.0264	1.0256	1.0247	1.0238	1.0230	1.0222	1.02.15	1.0207	1.0200	1.0194
380	1.0317	1.0300	1.0289	1.0279	1.0270	1.0261	1.0252	1.0243	1.0234	1.0227	1.0219	1.0211	1.0204
400	1.0328	1.0317	1.0305	1.0294	1.0285	1.0275	1.0265	1.0256	1.0246	1.0238	1.0230	1.0223	1.0215
420	1.0345	1.0333	1.0321	1.0309	1.0299	1.0289	1.0279	1.0269	1.0259	1.0250	1.0242	1.0234	1.0226
440	7.0361	1.0349	1,0336	1.0324	1,0313	1.0302	1.0292	1.0281	1.0272	1.0262	1.0253	1.0244	1.0236

