Name:

Enrolment No:

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2021

Programme N	Name: B.	Tech in Applied	Petroleum Engi	ineering, Spl. (Gas

Course Name	: Mass Transfer
Course Code	: CHCE 2017

Semester: IVTime: 03 hrs.Max. Marks: 100

Nos. of page(s) : 2

Instructions: The exam will be <u>OPEN BOOK and OPEN NOTES</u> exam. The students are allowed any textbooks, photo-copied and hand-written notes. The <u>students will need graph papers</u>

SECTION A [30]

S. No.		Marks	CO					
Q1.	a. What is the significance of "Chemical Potential" in mass transfer operations? Answer in detail.	[5]	CO1					
	b. Starting from $N_A = N$. $X_A + J_A$, show that $j_A = \rho_A (v_A - v)$ Here, N, N _A and J _A are the molar fluxes in kmol/m ² .sec and j _A and j _B are mass fluxes in kg/m ² sec. ρ_A is the density and v_A , v are the velocities.							
Q2.	 A solution containing 60% A and 40% C is fed to a <u>co-current</u> extractor at 120 kmol/hr. Solvent B is added to the process at 200 kmol/hr. a. Calculate the amount of C removed for the above condition. b. Calculate the amount of C removed if the process is converted to a <u>2 staged</u> <u>cross current process</u> with 100 kmol/hr of B added to each stage. Write what do you infer from both the results. The equilibrium data is as below X (kmol of C per kmol of A) 0.05 0.2 0.3 0.45 0.5 0.54 <i>Y</i> (kmol of C per kmol of B) 0.25 0.4 0.5 0.65 0.7 0.74 							
	SECTION B [30]	<u> </u>						
 Q3. a. Explain how heat and mass transfer are simultaneously affecting the process of drying and humidification. b. If a solid is partially soaked in water, how will the process of drying occur? Please explain in terms of movement of water molecules. 								
Q4.	Crude with 0.8% H ₂ S fed at 1500 Kmol/hr is treated in a packed column with ethanolamine solution containing 0.02% H ₂ S. The optimum liquid rate is 2.5 times the minimum liquid flowrate. If the packed column of diameter 2 m is filled in random with 2.5 in glass saddle packings, <u>calculate the height of the packing</u> required to separate 98% of H ₂ S from the crude. The mass transfer coefficient for the process K _{Ga} = 1450 Kmol/hr. m ³ and equilibrium condition follows the equation $y^* = 1.5x$. The minimum liquid flowrate for the process is 1090 Kmol/hr.							

SECTION-C [40]										
Q5.	55% Butane and 45% Hexane mixture is separated in a distillation column operated at 1 atm pressure and 45°C. The Distillate is removed at 450 kmol/hr and has composition of 90% and the bottom has 92%. The optimum reflux is 2 times the minimum reflux. The feed condition is an equal mixture of vapor and liquid. a. Calculate the Real number of trays required for the process if the efficiency is 68% . b. Calculate the optimum feed tray location c. Feed flowrate needed for the process. d. What should be done to increase the purity of the product?The equilibrium data is as below y^* y^* 0.21 0.37 0.51 0.64 0.72 0.79 0.86 0.91 0.96 0.98 x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95	[40]	CO4							