| -     |   |   |   |   |
|-------|---|---|---|---|
| a     | m | n | Δ | ۰ |
| <br>а | ш |   | L | • |

## **Enrolment No:**



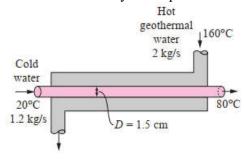
## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **End-semester Examination, May-2021**

Course: Heat Transfer Semester: 4 Time: 03 hrs. **Program:** B. Tech (APE Gas)

Course Code: CHCE 2009 Max. Marks: 100

## **Instructions:**

1. This is a **closed book** examination. Please write your answers with detailed information, wherever required.


| 2. In case of any missing data or information, make necessary assumptions with proper reason. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |     |  |  |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|--|--|
|                                                                                               | SECTION A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |  |  |
| S. No.                                                                                        | o. Statement of the questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |     |  |  |
| Q 1                                                                                           | State Fourier's law and Newton's law of cooling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | CO1 |  |  |
| Q 2                                                                                           | What is thermal diffusivity? What is its significance?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | CO2 |  |  |
| Q 3                                                                                           | State three (3) differences between natural and forced convection? (Table not needed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | CO3 |  |  |
| Q 4                                                                                           | State the Stefan–Boltzmann law for a blackbody. How can the law be applied to a real bodies.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | CO4 |  |  |
| Q 5                                                                                           | What is fouling? Mention one example, where it is encountered, and mention 2 (two) methods by which it can be avoided.                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | CO5 |  |  |
| Q 6                                                                                           | State the <b>no-slip</b> condition, and <b>no temperature jump</b> condition. Mention one similarity or difference ( <i>any one</i> ) between them.                                                                                                                                                                                                                                                                                                                                                                                                     | 5  | CO3 |  |  |
|                                                                                               | SECTION B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |  |  |
| Q 7                                                                                           | An aluminum pan whose thermal conductivity is $k_{roll}$ W/m·°C has a flat bottom with diameter 20 cm and thickness 0.4 cm. Heat is transferred steadily to boiling water in the pan through its bottom at a rate of 800 W. If the inner surface of the bottom of the pan is at 105°C, determine the temperature of the outer surface of the bottom of the pan. Mention all necessary assumptions. Here, $k_{roll}$ = last two digits of your roll number. For, example: If, Roll number: R820219007, then thermal conductivity, $k_{roll}$ = 07 W/m·°C | 10 | CO1 |  |  |
| Q 8                                                                                           | Consider a 5-m-high, 8-m-long, and 0.22-m-thick wall whose representative cross section is as given in the figure below. The thermal conductivities of various materials used, in W/m · °C, are $k_A = k_F = 2$ , $k_B = 8$ , $k_C = 20$ , $k_D = k_{roll}$ , and $k_E = 35$ . The left and right surfaces of the wall are maintained at uniform temperatures of 300°C and 100°C, respectively. Determine, (a) the rate of heat transfer through the wall; (b) the                                                                                      | 10 | CO2 |  |  |

| temperature at the point where the sections B, D, and E meet represented by red dashed circle; and (c) the temperature drop across the section F. Mention other necessary assumptions with proper reasons for each.  Here, $k_{roll}$ = last two digits of your roll number. For, example: If, Roll number: R820219007, then thermal conductivity, $k_{roll}$ = 07 W/m · °C                                                                                                                                                                                                                                                                                                                                                        |    |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| Engine oil at 60°C flows over the upper surface of a 5-m-long, width 10 m, and height, 1 m, flat plate whose temperature is 20°C with a velocity of 2 m/s, shown in the image below. Determine the (i) total drag force and the (ii) heat flux over the entire plate. Mention all necessary assumptions.  Given data: Density = 876 kg/m³, $k = 0.144$ W/m · °C, Kinematic viscosity = 242 × $10^{-6}$ m²/s, thermal diffusivity = $0.012 \times 10^{-6}$ m²/s, specific heat = $500$ J/kg · °C  Use the following correlations:  For laminar flow,  Drag coefficient, $C_D = 24/Re$ & Nusselt number, $Nu = 0.664$ $Re^{0.5}$ $Pr^{1/3}$ For turbulent flow,  Drag coefficient, $C_D = 0.44$ & $Nu = 0.664$ $Re^{0.2}$ $Pr^{0.5}$ | 10 | CO3 |
| Q 10 Derive the expression for heat transfer coefficient due to radiation heat transfer with all necessary assumptions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 | CO4 |
| Q 11 Describe the working principle of any three (3) type of heat exchanger with labelled diagram.  OR  Derive the expression for log mean temperature difference in a double pipe heat exchanger. Mention all necessary assumptions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 | CO5 |
| SECTION C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |     |

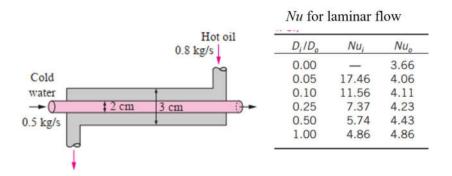
A counter-flow double-pipe heat exchanger is to heat water from  $20 \,^{\circ}\text{C}$  to  $80 \,^{\circ}\text{C}$  at a rate of  $1.2 \,\text{kg/s}$ . The heating is to be accomplished by geothermal water available at  $160 \,^{\circ}\text{C}$  at a mass flow rate of  $2 \,\text{kg/s}$ . The inner tube is thin-walled and has a diameter of  $1.5 \,^{\circ}\text{cm}$ .

If the overall heat transfer coefficient of the heat exchanger is 640 W/m<sup>2</sup>. °C, determine the **length of the heat exchanger** required to achieve the desired heating.

The specific heat of water and geothermal fluid is 4.18 and 4.31, with units, kJ/kg· °C. Mention the necessary assumptions.



OR


Hot oil is to be cooled in a double-tube counter-flow heat exchanger. The copper inner tubes have a diameter of 2 cm and negligible thickness. The inner diameter of the outer tube (the shell) is 3 cm. In addition, water flows through the tube at a rate of 0.5 kg/s, and the oil through the shell at a rate of 0.8 kg/s.

Taking the average temperatures of the water and the oil to be 45 °C and 80 °C, respectively, **determine the overall heat transfer coefficient** of this heat exchanger. Mention all necessary assumptions with its reasons.

Here, Nusselt number,  $Nu = 0.028 Re^{0.8} Pr^{0.4}$  (for turbulent flow) and the value of Nu for laminar flow is provided in the table.

The properties of water at 45°C are:  $\rho = 990 \text{ kg/m}^3$ , Pr = 3.91,  $k = 0.637 \text{ W/m} \cdot ^{\circ}\text{C}$ , kinematic viscosity,  $v = 0.602 \times 10^{-6} \text{ m}^2/\text{s}$ .

The properties of oil at 80°C are:  $\rho = 852 \text{ kg/m}^3$ , Pr = 490,  $k = 0.138 \text{ W/m} \cdot ^{\circ}\text{C}$ , kinematic viscosity,  $v = 37.5 \times 10^{-6} \text{ m}^2/\text{s}$ 



20

CO<sub>5</sub>