Name: Enrolment No:			
Prog Cou Cou Nos. Inst		S r arks	$\begin{aligned} & \text { IV } \\ & 03 \mathrm{hrs} \\ & 100 \end{aligned}$
SECTION A			
S. No.	Statement	Mar ks	CO
Q 1	A rod of 150 cm long and diameter 2.0 cm is subjected to an axial pull of 20 KN . If the modulus of elasticity of the material of the rod is $2 \mathrm{x} 105 \mathrm{~N} / \mathrm{mm} 2$ Determine 1. Stress 2. Strain 3.the elongation of the rod. Write the annswer only.	5	CO1
Q 2	A stepped bar as shown in figure is subjected to an axially applied load of 35 kN . Find the ratio of maximum and minimum stresses produced. Write the annswer only.	5	CO1
Q 3	Define a composite bar. Also, explain the method of finding the stresses and load carried by each member of a composite bar.	5	CO2
Q 4	Differentiate between primary shear and secondary shear along with suitable examples.	5	CO2
Q 5	Enlist the assumption made in deducing equation for simple bending.	5	CO3
Q 6	Discuss temperature stress.	5	CO1
	SECTION B		
Q 7	Draw the shear force and bending moment for the simply supported beam loaded as shown in figure. Also discuss its' salient features.	10	CO2

Q 8	A solid circular shaft transmits 75 kW power at 200 r.p.m. Calculate the shaft diameter, if the twist in shaft is not to exceed 1 degree in 2 m length of the shaft, and shear stress is limited to $50 \mathrm{~N} / \mathrm{mm}^{2}$. Take $\mathrm{G}=1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.	10	CO 3
Q 9	A closed cylindrical vessel made of steel plates 6 mm thick with plane ends, carries fluid under pressure of $2.5 \mathrm{~N} / \mathrm{mm}^{2}$ The diameter of the cylinder is 30 cm and length is 70 cm . Calculate the longitudinal and hoop stresses in the cylinder wall and determine the change in diameter, length and Volume of the cylinder. Take $E=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and poison's ratio $=0.3$.	10	CO3
Q 10	Starting with the assumption made in theory of simple bending, derive an expression for the following bending equation with usual notations; $\frac{M}{I}=\frac{\sigma}{y}=\frac{E}{R}$	10	CO 2
Q 11	A simply supported beam of a square cross-section of the dimensions $250 \mathrm{~mm} \times 250$ mm is loaded as shown in figure. Find the maximum bending stresses developed in the beam. Compare the bending strength of two shafts of same cross-section area, one is circular and other is square in cross-section.	10	CO 2
	SECTION-C		
Q 12	A beam of length 6 m length is loaded as shown in figure. Determine the slop and deflection at point C and D .	20	CO4

