Name: Enroli	e: Iment No: UNIVERSITY WITH A PURPOSE		_	
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2021	5		
Cours Cours Nos. o	ramme Name:B.Tech. Automotive Design Engg.Semesterrse Name:I. C. EnginesTimerse Code:MEAD2002Max. Markof page(s):4actions:Read the questions carefully and attempt as per section. Assume suitable data as required	ks: 100	80 Minı	
S.	Attempt all questions.	Ν	I arks	СО
<u>No.</u> Q 1	An engine 200 mm bore diameter and 300 mm stroke works on otto cycle. The or volume is 0.0016 m ³ . The initial pressure and temperature are 1 bar and 300 K resp The heat transfer to air per cycle is 1900 kJ/kg of air. Calculate : (i) Thermal efficiency (ii) Mean effective pressure		5	CO1
Q 2	Explain the combustion chamber design principles of SI engines related to ensure th operation (No Knocking).	e smooth	5	CO3
Q 3	A two-stroke cycle internal combustion engine has a mean effective pressure of 6 speed of the engine is 1000 rpm. If the diameter of piston and stroke are 110 mm and respectively, find the indicated power developed.		5	CO2
Q 4	Explain the requirements of fuel injection system in CI engine.		5	CO2
Q 5	Explain the A/F Mixture requirement of SI Engine in following cases: (i) Cruising or normal power (ii) Acceleration		5	CO3
Q 6	Discuss in brief the effect of A/F ratio in SI emission: NOx, CO and unburnt hydrocarbon.		5	CO5
	SECTION B (50 Marks)			
	Attempt five questions. There is internal choice is in Q. No. 3 and 4.			
Q 1	Explain the applicable knocking theories to explain the abnormal combustion in SI Suggest any two parameters to reduce the knocking. Support with suitable diagrams	U	10	CO3
Q 2	(a)Explain the stages of combustion in CI engines with help of Heat release rate diag imposing with injection characteristics.(b) Explain the ignition delay in detail.		8+2	CO3

	the pressure and temperature are 1 bar and 300 K respectively. The heat transfer to air per cycle is 1800 kJ/kg of air. Calculate: (i) Thermal efficiency		
	(i) The mean effective pressure		
	OR	10	CO1/ CO2
	 An oil engine works on the ideal diesel cycle. The overall compression ratio is <i>18:1</i> and the heat is added at constant pressure in 10% of stroke volume (V₃-V₂= 10% V_s). Intake conditions are 1 bar and 20^o C . The engine uses 100m³ of air per hour. Use standard properties of air Y=1.4, Cp= 1.005 kJ/kg, Cv = 0.714 kJ/kg etc. Determine; (a) Max temperature/ pressure of cycle, (b) thermal efficiency of engine & indicated power of the engine and 		
Q 4	Explain the evaporative losses in SI engines. Explain the technology to be adopted to reduce the evaporative losses with help of suitable diagram.		
	OR	10	CO5
	Discuss the genesis of HC sources in SI engine with help of flow chart.		
Q 5	A six cylinder 4 stroke CI engine develops 220 kW at 1500 rpm with brake specific fuel consumption of 0.273 kg/kWh. Determine the size of single hole injector nozzle if the injection pressure is 160 bar and combustion pressure in cylinder is 40 bar. The injection duration is 30 ^o of crank angle. Specific gravity of fuel may be considered as 0.85 and coefficient of orifice discharge is 0.9.		
	OR		
	Design the main dimensions of a carburetor for the following data of a four stroke, four cylinder engines.	10	CO3/ CO4
	Bore = 80 cm , Stroke = 100 cm , Speed = 2800 rpm		
	Volumetric efficiency = 90%, Venturi depression = 0.10 bar		
	A/F = 13:1, Density of air = 1.16 kg/m^3 , specific gravity of fuel = 0.78		
	Neglect the compressibility.		
	SECTION-C (20 Marks)		1

Q 1	During the trial of a single acting oil engine for duration of 60 minutes, following observation were made:	20	CO4
	Engine Type : 2 Stroke engine		
	Cylinder bore= 200 mm		
	Length of stroke = 280 mm		
	Indicated mean effective pressure= 2.74 bar		
	Engine speed = 350 rpm		
	Fuel oil used per hour = 4.22 kg		
	Calorific value of oil = 44670 kJ/kg		
	Brake torque = 600 Nm		
	Mass of jacket cooling water = 135 kg		
	Temperature of exhaust gases = 370^{0} C		
	Temperature of air in test room $= 20^{0} \text{ C}$		
	Inlet temperature of cooling water = 13^{0} C		
	Outlet temperature of cooling water $= 38^{0}$ C		
	Mean specific heat of exhaust gases = 1.005 kJ/kg K		
	Hydrogen in fuel (on Mass basis) = 15%		
	Specific heat of steam in Exhaust gases = 2.093 kJ/kgK		
	Assume pressure of steam in exhaust gases = 1.01325 bar		
	Calculate;		
	(a) Mechanical & Indicated thermal efficiency(b) Brake specific fuel consumption(c) Draw up the heat balance sheet in kJ/min and percentages of heat supplied to engine		
	Consider properties of steam from following table:		

p (bar)	<i>t</i> s (°C)	v_f (m^3/kg)	$\frac{v_g}{(m^3/kg)}$	u _f (kJ/kg)	ug (kJ/kg)	h _f (kJ/kg)	h _g (kJ/kg)	sf (kJ/kg K)	^{Sg} (kJ/kg K)	
1.01325	100.0	0.001044	1.673	419	2507	419	2676	1.307	7.355	
	<u> </u>				OR					
<u> </u>		gs were take	n during a	a test on s	ingle cyli			engine;		
	Cylinde Stroke						250mm 400 mm			
	Stroke length Indicated mean effective pressure						6.8bar			
	Engine speed						300 rpm			
	Fuel oil used per hour						3.4kg			
(Calorific value of fuel						42000kJ/kg			
	Brake torque						480Nm			
	Mass of jacket cooling water per minute5.1kg									
	Rise in temperature of jacket cooling water						40°C			
	Mass of air supplied per minute						1.35kg 350°C			
	Temperature of exhaust gases Room temperature						$20^{\circ} C$			
	Mean specific heat of dry exhaust gases						1.1 kJ/kg			
	Hydrogen in fuel on mass basis						12.5 %			
	Specific heat of steam in exhaust gases						2.1 kJ/kgK			
]	Pressure of steam in exhaust gases						1.01325 bar			
	Specific heat of water						4.18 kJ/kgK			

Calculate the mechanical and indicated thermal efficiencies and brake specific fuel consumption. Also draw up the heat balance sheet in kJ/min and as percentage of heat supplied to engine with help of pie chart/ Sanky's diagram. Analyse the heat balance and make your conclusions.