| Name: | |
| :--- | :--- | :--- |
| Enrolment No: | UPES |

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
 Online End Semester Examination, May 2021

Course: Elements of Modern Physics
Program: B.Sc. (H) Physics
Semester: IV
Time: 3 Hrs
Course Code: PHYS 2005
Max. Marks: 100

Section A

All questions are compulsory. Each question carries 5 marks.

S.No.	Question	CO
Q1	(i) The group speed of the matter wave associated with a non-relativistically freely moving particle is (2) (a) Half of the particle speed (b) Equal to the particle speed (c) More than the particle speed (d) Equal to the speed of light (ii) For the microscopic particles, the \qquad nature is dominant over the \qquad nature (2) (a) wave, particle (b) particle, wave (iii) Matter waves are \qquad in nature. (1) (a) electromagnetic (b) non-electromagnetic	CO1
Q2	(i) Select the correct statement. (2) (a) Population inversion is not a necessary condition to produce laser. (b) Absorption is always stimulated. (c) Spontaneous emission is always accompanied by stimulated emission. (d) Ruby laser is an example of electronic pumping. (ii) Which of these is a property of Laser. (2) (a) Monochromatic (b) Directional (c) Coherent (d) All of the above (iii) Isotone are those which have (1) (a) Same number of neutrons (b) Same mass number	CO2
Q3	The stability of $\mathrm{Cl}(\mathrm{A}=36, \mathrm{Z}=17)$ with respect to alpha, beta-plus, and beta-minus decay is to be determined. Do not consider the possibility of decay by electron capture. The following atomic masses are known:	CO 4

	${ }_{2}^{4} \mathrm{He}$ 4.002603 ${ }_{15}^{32} \mathrm{P}$ 31.973907 ${ }_{16}^{36} \mathrm{~S}$ 35.967081 ${ }_{17}^{36} \mathrm{Cl}$ 35.968307 ${ }_{18}^{36} \mathrm{Ar}$ 35.967546 The $\mathrm{Cl}(\mathrm{A}=36, \mathrm{Z}=17)$ nuclide is: (a) subject to beta-plus decay only (b) subject to beta-minus decay only (c) subject to alpha decay only (d) not subject to alpha, beta-plus, or beta-minus decay (e) subject to beta-plus or beta-minus decay, but not to alpha decay	
Q4	What do you mean by the term pair production?	CO1
Q5	What are thermonuclear reactions.	CO1
Q6	Out of protons, electrons and neutrons which is the most suitable probe to study properties of nucleus and why?	CO 4
	Section B All questions are compulsory. Each question carries 10 marks.	
Q7	Establish a relation between Einstein's A and B coefficients.	CO 3
Q8	A system is defined by the wave function $\varphi(x)=\operatorname{Acos}\left(\frac{2 \pi x}{L}\right)$ for $-\frac{L}{4} \leq x \leq \frac{L}{4}$. Find the probability of finding the particle between $x=0$ and $x=\frac{L}{16}$.	CO3
Q9	Write a brief note on the semi-empirical mass formula inclusive of all terms of binding energy.	CO 2
Q10	A piece of an ancient wooden box shows an activity of ${ }^{14} \mathrm{C}$ of 3.9 disintegrations per minute per gm of Carbon. Estimate the age of the box if the half-life of ${ }^{14} \mathrm{C}$ is 5568 years if the activity of fresh ${ }^{14} \mathrm{C}$ is 15.6 disintegrations per minute per gm.	CO3
Q11	Starting from the momentum conservation equations (in Compton effect) derive a relation between the angle of scattering \varnothing and angle of recoil θ. $\tan \theta=\frac{\cot \frac{\emptyset}{2}}{1+\frac{h v}{m_{o} c^{2}}}$ where v is the frequency of incident photon and m_{0} is the rest mass of the electron.	CO 4

Section C Attempt any one question. Each question carries 20 marks.		
Q12	Discuss the motion of an electron across a potential step of finite height. Calculate the reflection and transmission coefficients. OR A beam of particles with energy E is incident on a potential barrier with potential function $\left\{\begin{array}{cc} V(x)=0 & \text { for } x<0 \\ V(x)=V_{o} & \text { for } 0<x<a \\ V(x)=0 & \text { for } x>a \end{array}\right\}$ where the symbols have their usual meaning. Show that there is a finite probability of transmission even if $E<V_{o}$.	CO2
Values of some physical constants: Planck's constant, $\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J} . \mathrm{s}$ Boltzmann's constant, $\mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ Mass of electron, $m_{e}=9.1 \times 10^{-31} \mathrm{Kg}$ Mass of proton, $\mathrm{m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{Kg}$ Velocity of light, $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ Rydberg Constant, $\mathrm{R}=1.097 \times 10^{7} \mathrm{~m}^{-1}$ Avogadro's number $=6.023 \times 10^{23}$ Permittivity of free space, $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$ Permeability of free space, $\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$		

