Name: Enrolment No:			U 🎝	PES	
Course: Elements of Modern Physics Program: B.Sc. (H) Physics Course Code: PHYS 2005			Examination, May 2021	ES Semester: IV Time: 3 Hrs Max. Marks: 1	100
			ion A ry. Each question carries 5 m	arks.	
S.No.	Question				CO
Q1	(i) (ii) (iii)	Matter waves arein	nature is dominant over the article, wave		C01
Q2	(i) (ii) (iii)	Select the correct statement. (2) (a) Population inversion is not a nec (b) Absorption is always stimulated. (c) Spontaneous emission is always (d) Ruby laser is an example of elect Which of these is a property of Lase (a) Monochromatic (b) Direction Isotone are those which have (1) (a) Same number of neutrons	accompanied by stimulated em tronic pumping. r. (2)	nission. Ill of the above	CO2
Q3		ity of Cl (A = 36, Z = 17) with respected. Do not consider the possibility of e known:		-	CO4

	$\frac{4}{2}$ <i>He</i> 4.002603	
	$^{32}_{15}P$ 31.973907	
	$^{36}_{16}S$ 35.967081	
	$^{36}_{17}Cl$ 35.968307	
	$^{36}_{18}Ar$ 35.967546	
	The Cl (A = 36, Z = 17) nuclide is:	
	 (a) subject to beta-plus decay only (b) subject to beta-minus decay only (c) subject to alpha decay only (d) not subject to alpha, beta-plus, or beta-minus decay (e) subject to beta-plus or beta-minus decay, but not to alpha decay 	
Q4	What do you mean by the term pair production?	CO1
Q5	What are thermonuclear reactions.	C01
Q6	Out of protons, electrons and neutrons which is the most suitable probe to study properties of nucleus and why?	CO4
-	Section B	
Q7	All questions are compulsory. Each question carries 10 marks. Establish a relation between Einstein's A and B coefficients.	~~ ^
		CO3
Q8	A system is defined by the wave function $\varphi(x) = A\cos\left(\frac{2\pi x}{L}\right)$ for $-\frac{L}{4} \le x \le \frac{L}{4}$. Find the probability of finding the particle between $x = 0$ and $x = \frac{L}{16}$.	
Q9	Write a brief note on the semi-empirical mass formula inclusive of all terms of binding energy.	CO2
Q10	A piece of an ancient wooden box shows an activity of ¹⁴ C of 3.9 disintegrations per minute per gm of Carbon. Estimate the age of the box if the half-life of ¹⁴ C is 5568 years if the activity of fresh ¹⁴ C is 15.6 disintegrations per minute per gm.	
Q11	Starting from the momentum conservation equations (in Compton effect) derive a relation between the angle of scattering Ø and angle of recoil θ. $tan\theta = \frac{\cot \frac{\varphi}{2}}{1 + \frac{hv}{m_o c^2}}$ where v is the frequency of incident photon and m_0 is the rest mass of the electron.	CO4

Section C Attempt any one question. Each question carries 20 marks.				
Q12	Discuss the motion of an electron across a potential step of finite height. Calculate the reflection and transmission coefficients. A beam of particles with energy <i>E</i> is incident on a potential barrier with potential function $\begin{cases} V(x) = 0 & for \ x < 0 \\ V(x) = V_o & for \ 0 < x < a \\ V(x) = 0 & for \ x > a \end{cases}$ where the symbols have their usual meaning. Show that there is a finite probability of transmission even if $E < V_o$.	CO2		
Planck' Boltzma Mass of Mass of Velocit Rydber Avogad Permitti	of some physical constants: s constant, $h = 6.6 \ge 10^{-34}$ J.s ann's constant, $k = 1.38 \ge 10^{-23}$ J/K f electron, $m_e = 9.1 \ge 10^{-31}$ Kg f proton, $m_p = 1.67 \ge 10^{-27}$ Kg y of light, $c = 3 \ge 10^8$ m/s g Constant, $R = 1.097 \ge 10^7$ m ⁻¹ hro's number = $6.023 \ge 10^{23}$ ivity of free space, $\varepsilon_0 = 8.85 \ge 10^{-12}$ F/m bility of free space, $\mu_0 = 4\pi \ge 10^{-7}$ H/m			