Name: Enrolment No:		1 UPES UNIVERSITY WITH A PURPOSE	
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, MAY 2021 Course: Mathematical Physics III Semester: IV Program: B.Sc. (Physics) Time 03 hrs. Course code: PHYS 2004 Max. Marks: 100			
1. Each Question will carry 5 Marks2. Instruction: Complete the statement / Select the correct answer(s)			
S. No.	Question		CO
Q 1	If $U(t-a)$ is a unit step function, then $L[U$		CO2
Q2	$L^{-1}\left[\frac{1}{s^{n}}\right]$ is possible only when n is or a. Positive integer b. Zero c. Negative integer d. Negative rational		CO2
Q3	Find the Laplace transform of $t+t^{2}+t^{3}$ a. $\frac{1}{s^{2}}+\frac{2}{s^{3}}+\frac{6}{s^{4}}$ b. $\frac{1}{s^{2}}+\frac{2}{s^{3}}+\frac{3}{s^{4}}$ c. $\frac{1}{s^{2}}+\frac{1}{s^{3}}+\frac{1}{s^{4}}$ d. $\frac{1}{s}+\frac{2}{s^{2}}+\frac{3}{s^{3}}$		CO2
Q4	The value of Dirac delta function is will be. \qquad	only for a short time, otherwise it	C01
Q5	A three dimensional general wave equatio represented by the equation a. $\frac{\partial^{2} Y}{\partial t^{2}}=v^{2}\left(\frac{\partial^{2} Y}{\partial x^{2}}+\frac{\partial^{2} Y}{\partial y^{2}}+\frac{\partial^{2} Y}{\partial z^{2}}\right)$ b. $v^{2} \frac{\partial^{2} Y}{\partial t^{2}}=\left(\frac{\partial^{2} Y}{\partial x^{2}}+\frac{\partial^{2} Y}{\partial y^{2}}+\frac{\partial^{2} Y}{\partial z^{2}}\right)$ c. $v^{2} \frac{\partial Y}{\partial t}=\left(\frac{\partial^{2} Y}{\partial x^{2}}+\frac{\partial^{2} Y}{\partial y^{2}}+\frac{\partial^{2} Y}{\partial z^{2}}\right)$ d. $\frac{\partial Y}{\partial t}=v^{2}\left(\frac{\partial^{2} Y}{\partial x^{2}}+\frac{\partial^{2} Y}{\partial y^{2}}+\frac{\partial^{2} Y}{\partial z^{2}}\right)$	in space with velocity v can be	CO3

Q6	An analytic function within a closed contour can be expanded byseries while, if the function is analytic with in the closed ring bounded by two concentric circles centered at same point expanded by..........series.	CO1
	Each question will carry 10marks Instruction: Write short / brief notes	
Q 7	(a)State the Cauchy residue theorem for multiply connected region. (b) Evaluate $\oint_{c} \frac{z^{2}}{(z-1)^{2}(z-2)} d z$; where c is $\|z\|=1.5$	$\mathrm{CO1}$
Q 8	If $z=\cos \theta+i \sin \theta$, prove that $\frac{1+z}{1-z}=i \cot \frac{\theta}{2}$	CO1
Q 9	Evaluate (a) $\int_{0}^{\infty} e^{-t} t^{3} \sin t d t$ (b) $L^{-1}\left[\frac{s^{2}+2 s-3}{s(s-3)(s+2)}\right]$	$\mathrm{CO2}$
Q 10	Find the Fourier transform of $e^{-\frac{r^{2}}{a^{2}}}$, where a is a constant and $r=\sqrt{x^{2}+y^{2}+z^{2}}$.	$\mathrm{CO3}$
Q 11	Find the Laplace transform of the following function $f(t)=\left\{\begin{array}{cc} t & 0<t \leq b \\ 2 b-t & b<t<2 b \end{array} \quad \text { where } 2 b \text { being the period of } f(t) .\right.$ Find the Fourier transform of $f(x)= \begin{cases}1-x^{2} & \text { if }\|x\| \leq 1 \\ 0 & \text { if }\|x\|>1\end{cases}$ and use it to evaluate $\int_{0}^{\infty}\left(\frac{s \cos s-\sin s}{s^{3}}\right) \cos \frac{s}{2} d s$.	CO 2
	Each Question carries 20Marks. Section C Instruction: Write long answer.	
Q12	Find the equation of motion of an object exhibiting simple harmonic motion with a resistive force (damped harmonic oscillator) and find the solution of the differential equation by the Laplace Transform. OR An alternative emf $E=E_{0} \sin \omega t$ is applied to an inductance L and a capacitance C in series. Show that the current in the circuit is $\frac{E_{0} \omega}{\left(n^{2}-\omega^{2}\right) L}(\cos \omega t-\cos n t) \quad$, where $n^{2}=\frac{1}{L C}$	$\mathrm{CO4}$

