Name: Enrolm	nent No: UNIVERSITY WITH A PURPOSE	•••=•	
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, MAY 2021		
Course: Mathematical Physics IIISemester: IProgram: B.Sc. (Physics)Time 03 hrCourse code: PHYS 2004Max. Mark			
SECTION A 1. Each Question will carry 5 Marks 2. Instruction: Complete the statement / Select the correct answer(s)			
S. No.	Question	СО	
Q 1	If $U(t-a)$ is a unit step function, then $L[U(t-a)]=$	CO2	
Q2	$L^{-1} \left[\frac{1}{s^n} \right]$ is possible only when n is or a. Positive integer b. Zero c. Negative integer d. Negative rational	CO2	
Q3	Find the Laplace transform of $t + t^2 + t^3$ a. $\frac{1}{s^2} + \frac{2}{s^3} + \frac{6}{s^4}$ b. $\frac{1}{s^2} + \frac{2}{s^3} + \frac{3}{s^4}$ c. $\frac{1}{s^2} + \frac{1}{s^3} + \frac{1}{s^4}$ d. $\frac{1}{s} + \frac{2}{s^2} + \frac{3}{s^3}$	CO2	
Q4	The value of Dirac delta function is only for a short time, otherwise i will be	t CO1	
Q5	A three dimensional general wave equation propagating in space with velocity v can be represented by the equation a. $\frac{\partial^2 Y}{\partial t^2} = v^2 \left(\frac{\partial^2 Y}{\partial x^2} + \frac{\partial^2 Y}{\partial y^2} + \frac{\partial^2 Y}{\partial z^2} \right)$ b. $v^2 \frac{\partial^2 Y}{\partial t^2} = \left(\frac{\partial^2 Y}{\partial x^2} + \frac{\partial^2 Y}{\partial y^2} + \frac{\partial^2 Y}{\partial z^2} \right)$ c. $v^2 \frac{\partial Y}{\partial t} = \left(\frac{\partial^2 Y}{\partial x^2} + \frac{\partial^2 Y}{\partial y^2} + \frac{\partial^2 Y}{\partial z^2} \right)$ d. $\frac{\partial Y}{\partial t} = v^2 \left(\frac{\partial^2 Y}{\partial x^2} + \frac{\partial^2 Y}{\partial y^2} + \frac{\partial^2 Y}{\partial z^2} \right)$	CO3	

Q6	An analytic function within a closed contour can be expanded byseries while,	
	if the function is analytic with in the closed ring bounded by two concentric circles	CO1
	centered at same point expanded byseries.	
1	SECTION B	
	Each question will carry 10marks	
	Instruction: Write short / brief notes	
Q 7	(a)State the Cauchy residue theorem for multiply connected region.	
	(b) Evaluate $\oint_c \frac{z^2}{(z-1)^2(z-2)} dz$; where c is $ z = 1.5$	CO1
Q 8	If $z = \cos \theta + i \sin \theta$, prove that	CO1
	$\frac{1+z}{1-z} = i \cot\frac{\theta}{2}$	
Q 9	Evaluate	000
	(a) $\int_0^\infty e^{-t} t^3 \sin t dt$ (b) $L^{-1} \left[\frac{s^2 + 2s - 3}{s(s-3)(s+2)} \right]$	CO2
Q 10	Find the Fourier transform of $e^{-\frac{r^2}{a^2}}$, where a is a constant and $r = \sqrt{x^2 + y^2 + z^2}$.	CO3
Q 11	Find the Laplace transform of the following function	
	$f(t) = \begin{cases} t & 0 < t \le b \\ 2b - t & b < t < 2b \end{cases}$ where 2b being the period of $f(t)$.	CO2
	OR	
	Find the Fourier transform of	
	$f(x) = \begin{cases} 1 - x^2 & \text{if } x \le 1\\ 0 & \text{if } x > 1 \end{cases}$	
	and use it to evaluate $\int_0^\infty \left(\frac{s\cos s - \sin s}{s^3}\right) \cos \frac{s}{2} ds.$	
	Section C	
	Each Question carries 20Marks.	
	Instruction: Write long answer. Find the equation of motion of an object exhibiting simple harmonic motion with a	
Q12	resistive force (damped harmonic oscillator) and find the solution of the differential	
	equation by the Laplace Transform.	CO4
	OR	
	An alternative emf $E = E_0 \sin \omega t$ is applied to an inductance L and a capacitance C in	
	series. Show that the current in the circuit is $\frac{E_0\omega}{(n^2-\omega^2)L}(\cos\omega t - \cos nt)$, where $n^2 = \frac{1}{LC}$	