Name: Enrolment No:		
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2021 Course: Ring Theory and Linear Algebra I Semester: IV Programme: B.Sc. (Hons.) Mathematics Time: $\mathbf{0 3}$ hrs. Course Code: MATH 2031 Max. Marks: $\mathbf{1 0 0}$		
Instruc	SECTION A ions: Attempt all questions. Each question will carry 5 marks.	
S. No.	Question	CO
Q1	Let R be the ring of integers under ordinary addition and multiplication. Let R^{\prime} be the set of all even integers. Let us define addition in R^{\prime} to be denoted by " $*$ " by the relation $a * b=\frac{a b}{2}$ where $a b$ is the ordinary multiplication of two integers a and b. Then which statement is correct. A. $\left(R^{\prime},+, *\right)$ is a commutative ring. B. R is isomorphic to R^{\prime}. C. Unit element of R^{\prime} is 2 . D. All are true.	CO1
Q2	Which one is not TRUE? A. The set of integers I is only a subring but not an ideal of the ring of rational numbers $(Q,+, \cdot)$. B. The set Q of rational numbers is only a subring but not an ideal of the ring of real numbers ($R,+, \cdot$). C. If m is a fixed integer, the set P of integers given by $P=\{x m: x$ is an integer $\}$ is not an ideal of the ring $(R,+, \cdot)$ of all integers. D. None of the above.	CO2
Q3	Consider the real vector space $V=R^{3}(R)$ and following of its subsets (i) $S=\{(x, y, z) \in V: x=y=0\}$. (ii) $T=\{(x, y, z) \in V: x=0\}$. (iii) $W=\{(x, y, z) \in V: z \neq 0\}$. Which one of the following statement is correct A. S, T and W are subspaces. B. Only S and W are subspaces C. Only T and W are subspaces D. Only S and T are subspaces.	$\mathrm{CO4}$

Q4	The set $S_{1}=\left\{\alpha=\left[\begin{array}{ccc}1 & -2 & 4 \\ 3 & 0 & -1\end{array}\right], \beta=\left[\begin{array}{ccc}2 & -4 & 8 \\ 6 & 0 & -2\end{array}\right]\right\}$ and $S_{2}=\left\{f=u^{3}+3 u+4, g=\right.$ $\left.u^{3}+4 u+3\right\}$ are A. Both linearly dependent B. Both linearly independent C. S_{1} is linearly dependent but S_{2} is not D. S_{2} is linearly dependent but S_{1} is not	$\mathrm{CO4}$
Q5	If $V(F)$ and $U(F)$ be vector spaces of dimension 4 and 6 respectively. Then $\operatorname{dim}\{\operatorname{Hom}(V, U)\}$ is A. 24 B. 10 C. 6 D. 4	$\mathrm{CO5}$
Q6	Consider the mapping (i) $\quad T: R^{3} \rightarrow R^{2}, T(x, y, z)=(x+1, y+z)$. (ii) $\quad T: R^{3} \rightarrow R, T(x, y)=x y$. (iii) $T: R^{3} \rightarrow R^{2}, T(x, y, z)=(\|x\|, 0)$. Which of the above are linear transformation? A. (i) B. (ii) C. (i) and (ii) D. None of the above	$\mathrm{CO5}$
Instr	SECTION B tions: Attempt all questions. Each question will carry 10 marks. Question 11 has internal	
Q7	If R is a ring, show that $Z(R)=\{x \in R: x y=y x$ for every $y \in R\}$ is subring of R. Further show that $Z(R)$ is a field if R is a division ring.	CO1
Q8	Consider the ring R of all 3×3 matrices of the type $\left[\begin{array}{lll}a & b & c \\ 0 & d & e \\ 0 & 0 & f\end{array}\right]$ under matrix addition and multiplication where a, b, c, d, e, f are real numbers. Show that the set I of all matrices of the form $\left[\begin{array}{lll}a & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ is a left ideal of R, which is not a right ideal.	CO 2
Q9	If R is a ring with unit element 1 and ϕ is a homomorphism of R into an integral domain R^{\prime} such that the kernel of ϕ i.e. $I(\phi) \neq R$, then prove that $\phi(1)$ is the unit element of R^{\prime}.	CO3
Q10	Find the dimension of subspace of R^{4} spanned by the set $\{(1,0,0,0),(0,1,0,0),(1,2,0,1),(0,0,0,1)\}$ Hence, find its basis.	CO4

Q11	Let T be a linear operator in R^{3} defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}+x_{3},-2 x_{1}+x_{2},-x_{1}+2 x_{2}+4 x_{3}\right) .$ Find the matrix of T in the ordered basis $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$, where $\alpha_{1}=(1,0,1), \alpha_{2}=(-1,2,1), \alpha_{3}=(2,1,1)$ OR Find a linear transformation $T: R^{2} \rightarrow R^{2}$ such that $T(1,0)=(1,1)$ and $T(0,1)=(-1,2)$. Prove that T maps the square with vertices $(0,0),(1,0),(1,1)$ and $(0,1)$ into a parallelogram.	$\mathrm{CO5}$
Instr	SECTION C cions: Attempt all questions. Each question will carry 20 marks. Question 12 has internal	
Q12	Let U and V be vector spaces over the field F. Let T_{1} and T_{2} be linear transformations from U into V. The function $T_{1}+T_{2}$ is defined by $\left(T_{1}+T_{2}\right)(\alpha)=T_{1}(\alpha)+T_{2}(\alpha) \text { for every } \alpha \in U$ is a linear transformation from U into V. If c is any element of F, the function ($c T$) defined by is a linear transformation from U into V. $(c T)(\alpha)=c T(\alpha) \text { for every } \alpha \in U$ Prove that, the set $L(U, V)$ of all linear transformations from U into V, together with the addition and scalar multiplication defined above is a vector space over the field F. OR Prove that, two finite dimensional vector spaces over the same field are isomorphic if and only if they are of the same dimension.	CO6

