Name: **Enrolment No:** UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2021 **Course: Ring Theory and Linear Algebra I** Semester: IV Programme: B.Sc. (Hons.) Mathematics Time: 03 hrs. **Course Code: MATH 2031** Max. Marks: 100 SECTION A Instructions: Attempt all questions. Each question will carry 5 marks. S. No. Question СО Let *R* be the ring of integers under ordinary addition and multiplication. Let R' be the set of all even integers. Let us define addition in R' to be denoted by " * " by the relation $a * b = \frac{ab}{2}$ where ab is the ordinary multiplication of two integers a and b. Then which statement is correct. **Q1 CO1** A. (R', +, *) is a commutative ring. B. *R* is isomorphic to R'. C. Unit element of R' is 2. D. All are true. Which one is not TRUE? A. The set of integers I is only a subring but not an ideal of the ring of rational numbers $(0, +, \cdot).$ B. The set Q of rational numbers is only a subring but not an ideal of the ring of real Q2 **CO2** numbers $(R, +, \cdot)$. C. If m is a fixed integer, the set P of integers given by $P = \{xm : x \text{ is an integer}\}$ is not an ideal of the ring $(R, +, \cdot)$ of all integers. D. None of the above. Consider the real vector space $V = R^{3}(R)$ and following of its subsets $S = \{(x, y, z) \in V : x = y = 0\}.$ (i) $T = \{(x, y, z) \in V : x = 0\}.$ (ii) (iii) $W = \{(x, y, z) \in V : z \neq 0\}.$ Which one of the following statement is correct A. *S*, *T* and *W* are subspaces. Q3 B. Only *S* and *W* are subspaces **CO4** C. Only *T* and *W* are subspaces D. Only *S* and *T* are subspaces.

Q4	The set $S_1 = \left\{ \alpha = \begin{bmatrix} 1 & -2 & 4 \\ 3 & 0 & -1 \end{bmatrix}, \beta = \begin{bmatrix} 2 & -4 & 8 \\ 6 & 0 & -2 \end{bmatrix} \right\}$ and $S_2 = \{f = u^3 + 3u + 4, g = u^3 + 4u + 3\}$ are A. Both linearly dependent B. Both linearly independent C. S_1 is linearly dependent but S_2 is not D. S_2 is linearly dependent but S_1 is not	CO4
Q5	If $V(F)$ and $U(F)$ be vector spaces of dimension 4 and 6 respectively. Then $dim\{Hom(V, U)\}$ is A. 24 B. 10 C. 6 D. 4	CO5
Q6	Consider the mapping (i) $T: R^3 \rightarrow R^2$, $T(x, y, z) = (x + 1, y + z)$. (ii) $T: R^3 \rightarrow R$, $T(x, y) = xy$. (iii) $T: R^3 \rightarrow R^2$, $T(x, y, z) = (x , 0)$. Which of the above are linear transformation? A. (i) B. (ii) C. (i) and (ii) D. None of the above	CO5
	SECTION B	
Instru	ctions: Attempt all questions. Each question will carry 10 marks. Question 11 has internal c	hoice.
Q7	If <i>R</i> is a ring, show that $Z(R) = \{x \in R : xy = yx \text{ for every } y \in R\}$ is subring of <i>R</i> . Further show that $Z(R)$ is a field if <i>R</i> is a division ring.	CO1
Q8	Consider the ring <i>R</i> of all 3×3 matrices of the type $\begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix}$ under matrix addition and multiplication where <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> , <i>f</i> are real numbers. Show that the set <i>I</i> of all matrices of the form $\begin{bmatrix} a & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ is a left ideal of <i>R</i> , which is not a right ideal.	CO2
Q9	If <i>R</i> is a ring with unit element 1 and ϕ is a homomorphism of <i>R</i> into an integral domain <i>R'</i> such that the kernel of ϕ i.e. $I(\phi) \neq R$, then prove that $\phi(1)$ is the unit element of <i>R'</i> .	CO3
	Find the dimension of subspace of R^4 spanned by the set	CO4

Q11	Let T be a linear operator in R^3 defined by	
	$T(x_1, x_2, x_3) = (3x_1 + x_3, -2x_1 + x_2, -x_1 + 2x_2 + 4x_3).$	CO5
	Find the matrix of T in the ordered basis $\{\alpha_1, \alpha_2, \alpha_3\}$, where	
	$\alpha_1 = (1, 0, 1), \alpha_2 = (-1, 2, 1), \alpha_3 = (2, 1, 1)$	
	OR	
	Find a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that $T(1,0) = (1,1)$ and $T(0,1) = (-1,2)$.	
	Prove that <i>T</i> maps the square with vertices (0, 0), (1, 0), (1, 1) and (0, 1) into a parallelogram.	
	SECTION C	
Instru	ctions: Attempt all questions. Each question will carry 20 marks. Question 12 has internal c	hoice.
	Let U and V be vector spaces over the field F. Let T_1 and T_2 be linear transformations from U	
Q12	into V. The function $T_1 + T_2$ is defined by	
	$(T_1 + T_2)(\alpha) = T_1(\alpha) + T_2(\alpha)$ for every $\alpha \in U$	
	is a linear transformation from U into V.	
	If c is any element of F , the function (cT) defined by	
	$(cT)(\alpha) = cT(\alpha) \text{ for every } \alpha \in U$	CO6
	is a linear transformation from U into V.	
	Prove that, the set $L(U, V)$ of all linear transformations from U into V, together with the	
	addition and scalar multiplication defined above is a vector space over the field F .	
	OR	
	Prove that, two finite dimensional vector spaces over the same field are isomorphic if and only	
	if they are of the same dimension.	