Name: Enrolment No:		
Course: PDE and system of ODE Semester: IV Program: B.Sc. (Hons.) Mathematics Time: 3 Hrs. Course Code: MATH 2030 Max. Marks: 100		
1. Each Question will carry 5 Marks 2. Instruction: Select the correct option.		
Q 1	The partial differential equation $u_{x x x}+u u_{x}+u_{t}=0$ is A. Semi - Linear, homogeneous and third order B. Linear, non-homogeneous and third order C. Quasi Linear, homogeneous and second order D. Nonlinear, homogeneous and third order	CO1
Q 2	The solution of the partial differential equation $u_{x x}+u_{y y}=0$ is (are) A. $u(x, y)=x^{2}-y^{2}$ B. $u(x, y)=e^{x} \sin y$ C. $u(x, y)=2 x y$ D. None of these	CO2
Q 3	The characteristic curves of the equation $x^{2} u_{x x}-y^{2} u_{y y}=x^{2} y^{2}+x, x>0$ are A. Rectangular hyperbola B. parabola C. circle D. None of these	CO3
Q 4	The PDE $y^{3} u_{x x}-\left(x^{2}-1\right) u_{y y}=0$ is A. Parabolic in $\{(x, y): x<0\}$ B. Hyperbolic in $\{(x, y): y>0, x>1\}$ C. Elliptic in \mathbb{R}^{2} D. Parabolic in $\{(x, y): x>0\}$	CO 4
Q 5	Let $u(x, t)$ be the solution to the initial value problem $u_{t t}=u_{x x}$ for $-\infty<x<\infty, t>$ 0 with $u(x, 0)=\sin x, u_{t}(x, 0)=\cos x$, then the value of $u\left(\frac{\pi}{2}, \frac{\pi}{6}\right)$ is A. $\frac{\sqrt{3}}{2}$ B. $\frac{1}{2}$ C. $\frac{1}{\sqrt{2}}$ D. 1	CO 4
Q 6	The approximate values of $x(1)$ and $y(1)$ by using Picard's first approximation method for the solution of $\frac{d x}{d t}=y+t, \quad \frac{d y}{d t}=t-x^{2}$ given that $x(0)=2$ and $y(0)=1$ are A. 3.5 and 2.5 B. 3.5 and -2.5 C. -3.5 and 2.5 D. -3.5 and -2.5 , respectively.	CO 4
1. Each question will carry $\mathbf{1 0}$ marks 2. Instruction: Answer on a separate white sheet, upload the solution as image.		
Q 7	Determine the general solution of the first order PDE $x^{2} u_{x}+y^{2} u_{y}=(x+y) u$.	CO1
Q 8	Reduce the following equation to canonical form $x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}=0$.	CO2

Q 9	Determine the solution of the non-homogeneous partial differential equation $u_{x x}-u_{y y}=1$, with $u(x, 0)=\sin x, \quad u_{y}(x, 0)=x$.	CO3
Q10	(a) Show that $x=2 e^{2 t}, y=-3 e^{2 t}$, and $x=e^{7 t}, y=e^{7 t}$, are the solutions of the homogeneous linear system $\frac{d x}{d t}=5 x+2 y, \frac{d y}{d t}=3 x+4 y$, (b) Show that the two solutions defined in part (a) are linearly independent on every interval $a \leq t \leq b$, and write the general solution of the homogeneous system of part (a). (c) Show that $x=t+1, y=-5 t-2$, is a particular solution of the nonhomogeneous linear system $\frac{d x}{d t}=5 x+2 y+5 t, \quad \frac{d y}{d t}=3 x+4 y+17 t$, and write the general solution of this system.	CO4
Q 11	Using Runge-Kutta's fourth order method, determine the approximate values of x and y corresponding to $t=0.1$ and $t=0.2$ given that $x(0)=1$ and $y(0)=-1$ for $\frac{d x}{d t}=x y+t, \quad \frac{d y}{d t}=y t+x$.	CO 4
1. Each Question carries 20 Marks. 2. Instruction: Answer on a separate white sheet, upload the solution as image.		
Q 12	Determine the solution of initial boundary-value problem $u_{t t}=9 u_{x x}, \quad 0<x<\infty$, $t>0$, with $u(x, 0)=0, \quad 0 \leq x<\infty, \quad u_{t}(x, 0)=x^{3}, \quad 0 \leq x<\infty, u_{x}(0, t)=0, t \geq 0$. OR Determine the solution of initial boundary-value problem $u_{t t}=4 u_{x x}, 0<x<1, t>0$, with $u(x, 0)=0, \quad 0 \leq x<1, \quad u_{t}(x, 0)=x(1-x), \quad 0 \leq x<1, u(0, t)=0=u(1, t), t \geq 0$.	CO3

