Name:			
Enrolment No:		UNIVERSITY WITH A PURPOSE	
	UNIVERSITY OF PETRO	DLEUM AND ENERGY STUDIES	
		ions (Online Mode), May 2021	
	e: PDE and system of ODE	Semester: IV	
Program:B.Sc. (Hons.) MathematicsTime: 3 Hrs.Course Code:MATH 2030Max. Marks: 10			
Cours	SECTION		Monka
	truction: Select the correct option.	$-\mathbf{A} = 0 \mathbf{A} 3 - 3 0 1$	viai K5
Q 1	The partial differential equation u_{xxx} +	$-u u_x + u_t = 0$ is	CO1
	A. Semi – Linear, homogeneous ar	nd third order	
	B. Linear, non-homogeneous and t		
	C. Quasi Linear, homogeneous andD. Nonlinear, homogeneous and th		
Q 2	The solution of the partial differential en		CO2
<i>χ 2</i>		$f \sin y$ C. $u(x, y) = 2xy$ D. None of these	002
Q 3		$x^2 u_{xx} - y^2 u_{yy} = x^2 y^2 + x, \ x > 0$ are	CO3
	A. Rectangular hyperbola B. par		
Q 4	The PDE $y^3 u_{xx} - (x^2 - 1)u_{yy} = 0$ is		CO4
	A. Parabolic in $\{(x, y): x < 0\}$		
	B. Hyperbolic in $\{(x, y): y > 0, x\}$	> 1}	
	C. Elliptic in \mathbb{R}^2		
	D. Parabolic in $\{(x, y): x > 0\}$		
Q 5	Let $u(x, t)$ be the solution to the initial v	alue problem $u_{tt} = u_{xx}$ for $-\infty < x < \infty$, $t > (z - z)$	CO4
	0 with $u(x, 0) = \sin x$, $u_t(x, 0) = \cos x$	x, then the value of $u\left(\frac{\pi}{2}, \frac{\pi}{6}\right)$ is	
	A. $\frac{\sqrt{3}}{2}$ B. $\frac{1}{2}$	C. $\frac{1}{\sqrt{2}}$ D. 1	
Q 6	The approximate values of $x(1)$ and $y($	(1) by using Picard's first approximation method	CO4
	for the solution of $\frac{dx}{dt} = y + t$, $\frac{dy}{dt} = t$	$t - x^2$ given that $x(0)=2$ and $y(0)=1$ are	
	ut ut	- 3.5 and 2.5 D. -3.5 and -2.5, respectively.	
	SECTION	-B 10 x 5 = 50 1	Marks
	h question will carry 10 marks truction: Answer on a separate white s	heet, upload the solution as image.	
Q 7	Determine the general solution of the fi	irst order PDE $x^2u_x + y^2u_y = (x + y)u$.	CO1
Q 8	Reduce the following equation to canor	nical form $x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy} = 0.$	CO2

Q 9	Determine the solution of the non-homogeneous partial differential equation	CO3		
	$u_{xx} - u_{yy} = 1$, with $u(x, 0) = \sin x$, $u_y(x, 0) = x$.			
Q10	(a) Show that $x = 2e^{2t}$, $y = -3e^{2t}$, and $x = e^{7t}$, $y = e^{7t}$, are the solutions of the			
	homogeneous linear system $\frac{dx}{dt} = 5x + 2y$, $\frac{dy}{dt} = 3x + 4y$,			
	(b) Show that the two solutions defined in part (a) are linearly independent on every			
	interval $a \le t \le b$, and write the general solution of the homogeneous system of part (<i>a</i>).			
	(c) Show that $x = t + 1$, $y = -5t - 2$, is a particular solution of the nonhomogeneous			
	linear system $\frac{dx}{dt} = 5x + 2y + 5t$, $\frac{dy}{dt} = 3x + 4y + 17t$, and write the general solution of			
	this system.			
Q 11	Using Runge-Kutta's fourth order method, determine the approximate values of x			
	and y corresponding to $t = 0.1$ and $t = 0.2$ given that $x(0) = 1$ and $y(0) = -1$ for			
	$\frac{dx}{dt} = xy + t, \frac{dy}{dt} = yt + x.$			
Section – C 1 x 20 = 20 I				
 Each Question carries 20 Marks. Instruction: Answer on a separate white sheet, upload the solution as image. 				
Q 12	Determine the solution of initial boundary-value problem $u_{tt} = 9 u_{xx}$, $0 < x < \infty$,	CO3		
	$t > 0$, with $u(x,0) = 0$, $0 \le x < \infty$, $u_t(x,0) = x^3$, $0 \le x < \infty$, $u_x(0,t) = 0$, $t \ge 0$.			
	OR			
	Determine the solution of initial boundary-value problem $u_{tt} = 4 u_{xx}$, $0 < x < 1$, $t > 0$,			
	with $u(x,0) = 0$, $0 \le x < 1$, $u_t(x,0) = x(1-x)$, $0 \le x < 1$, $u(0,t) = 0 = u(1,t)$, $t \ge 0$.			